• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seed Dispersal of the Forest Herb <i>Podophyllum peltatum</i> by Multiple Vectors

Niederhauser, Eric C. 17 September 2015 (has links)
No description available.
2

Effects of Agricultural Land-use on Forest Development, Herb Community Composition and Spatial Dynamics

Holmes, Marion Andrews January 2017 (has links)
No description available.
3

Forest Regeneration and Land Use History in Southeast Ohio

Monsted, John W., Monsted January 2018 (has links)
No description available.
4

Linking plant population dynamics to the local environment and forest succession

Dahlgren, Johan Petter January 2008 (has links)
Linking environmental variation to population dynamics is necessary to understand and predict how the environment influences species abundances and distributions. I used demographic, environmental and trait data of forest herbs to study effects of spatial variation in environmental factors on populations as well as environmental change in terms of effects of forest succession on field layer plants. The results show that abundances of field layer species during forest succession are correlated with their functional traits; species with high specific leaf area increased more in abundance. I also found that soil nutrients affect vegetative and flowering phenology of the forest herb Actaea spicata. The effect of nutrients shows that a wider range of environmental factors than usually assumed can influence plant phenology. Moreover, local environmental factors affected also the demography of A. spicata through effects on vital rates. An abiotic factor, soil potassium affecting individual growth rate, was more important for population growth rate than seed predation, the most conspicuous biotic interaction in this system. Density independent changes in soil potassium during forest succession, and to a lesser extent plant population size dependent seed predation, were predicted to alter population growth rate, and thereby the abundance, of A. spicata over time. Because these environmental factors had effects on population projections, they can potentially influence the occupancy pattern of this species along successional gradients. I conclude that including deterministic, as opposed to stochastic, environmental change in demographic models enables assessments of the effects of processes such as succession, altered land-use, and climate change on population dynamics. Models explicitly incorporating environmental factors are useful for studying population dynamics in a realistic context, and to guide management of threatened species in changing environments.

Page generated in 0.0693 seconds