41 |
The Detection of Outlying Fire Service’s Reports: FCA Driven AnalyticsKrasuski, Adam, Wasilewski, Piotr 28 May 2013 (has links)
We present a methodology for improving the detection of outlying Fire Service’s reports based on domain knowledge and dialogue with Fire & Rescue domain experts. The outlying report is considered as element which is significantly different from the remaining data. Outliers are defined and searched on the basis of domain knowledge and dialogue with experts. We face the problem of reducing high data dimensionality without loosing specificity and real complexity of reported incidents. We solve this problem by introducing a knowledge based generalization level intermediating between analysed data and experts domain knowledge. In the methodology we use the Formal Concept Analysis methods for both generation appropriate categories from data and as tools supporting communication with domain experts. We conducted two experiments in finding two types of outliers in which outliers detection was supported by domain experts.
|
42 |
FCART: A New FCA-based System for Data Analysis and Knowledge DiscoveryNeznanov, Alexey A., Ilvovsky, Dmitry A., Kuznetsov, Sergei O. 28 May 2013 (has links)
We introduce a new software system called Formal Concept Analysis Research Toolbox (FCART). Our goal is to create a universal integrated environment for knowledge and data engineers. FCART is constructed upon an iterative data analysis methodology and provides a built-in set of research tools based on Formal Concept Analysis techniques for working with object-attribute data representations. The provided toolset allows for the fast integration of extensions on several levels: from internal scripts to plugins.
FCART was successfully applied in several data mining and knowledge discovery tasks. Examples of applying the system in medicine and criminal investigations are considered.
|
43 |
Non-Lattice Based Ontology Quality AssuranceZhu, Wei 28 August 2019 (has links)
No description available.
|
44 |
Completing Description Logic Knowledge Bases using Formal Concept AnalysisBaader, Franz, Ganter, Bernhard, Sattler, Ulrike, Sertkaya, Barış 16 June 2022 (has links)
We propose an approach for extending both the terminological and the assertional part of a Description Logic knowledge base by using information provided by the assertional part and by a domain expert. The use of techniques from Formal Concept Analysis ensures that, on the one hand, the interaction with the expert is kept to a minimum, and, on the other hand, we can show that the extended knowledge base is complete in a certain sense.
|
45 |
A finite basis for the set of EL-implications holding in a finite modelBaader, Franz, Distel, Felix 16 June 2022 (has links)
Formal Concept Analysis (FCA) can be used to analyze data given in the form of a formal context. In particular, FCA provides efficient algorithms for computing a minimal basis of the implications holding in the context. In this paper, we extend classical FCA by considering data that are represented by relational structures rather than formal contexts, and by replacing atomic attributes by complex formulae defined in some logic. After generalizing some of the FCA theory to this more general form of contexts, we instantiate the general framework with attributes defined in the Description Logic (DL) EL, and with relational structures over a signature of unary and binary predicates, i.e., models for EL. In this setting, an implication corresponds to a so-called general concept inclusion axiom (GCI) in EL. The main technical result of this report is that, in EL, for any finite model there is a finite set of implications (GCIs) holding in this model from which all implications (GCIs) holding in the model follow.
|
46 |
A General Form of Attribute ExplorationBorchmann, Daniel 20 June 2022 (has links)
We present a general form of attribute exploration, a knowledge completion algorithm from formal concept analysis. The aim of this generalization is to extend the applicability of attribute exploration by a general description. Additionally, this may also allow for viewing different existing variants of attribute exploration as instances of a general form, as for example exploration on partial contexts.
|
47 |
Exploration by ConfidenceBorchmann, Daniel 20 June 2022 (has links)
Within formal concept analysis, attribute exploration is a powerful tool to semiautomatically check data for completeness with respect to a given domain. However, the classical formulation of attribute exploration does not take into account possible errors which are present in the initial data. We present in this work a generalization of attribute exploration based on the notion of confidence, which will allow for the exploration of implications which are not necessarily valid in the initial data, but instead enjoy a minimal confidence therein.
|
48 |
Studies on Several Methods for Integrating Formal Concept Analysis and Statistical Machine Learning / 形式概念分析と統計的機械学習を統合するためのいくつかの手法に関する研究Peng, Siqi 24 September 2024 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25634号 / 情博第890号 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 山本 章博, 教授 鹿島 久嗣, 教授 阿久津 達也 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
49 |
Analyse formelle de concepts et fusion d'informations : application à l'estimation et au contrôle d'incertitude des indicateurs agri-environnementaux / Formal concept analysis and information fusion : application on the uncertainty estimation of environmental indicatorAssaghir, Zainab 12 November 2010 (has links)
La fusion d'informations consiste à résumer plusieurs informations provenant des différentes sources en une information exploitable et utile pour l'utilisateur.Le problème de la fusion est délicat surtout quand les informations délivrées sont incohérentes et hétérogènes. Les résultats de la fusion ne sont pas souvent exploitable et utilisables pour prendre une décision, quand ils sont imprécis. C'est généralement due au fait que les informations sont incohérentes. Plusieurs méthodes de fusion sont proposées pour combiner les informations imparfaites et elles appliquent l'opérateur de fusion sur l'ensemble de toutes les sources et considèrent le résultat tel qu'il est. Dans ce travail, nous proposons une méthode de fusion fondée sur l'Analyse Formelle de Concepts, en particulier son extension pour les données numériques : les structures de patrons. Cette méthode permet d'associer chaque sous-ensemble de sources avec son résultat de fusion. Toutefois l'opérateur de fusion est choisi, alors un treillis de concept est construit. Ce treillis fournit une classification intéressante des sources et leurs résultats de fusion. De plus, le treillis garde l'origine de l'information. Quand le résultat global de la fusion est imprécis, la méthode permet à l'utilisateur d'identifier les sous-ensemble maximaux de sources qui supportent une bonne décision. La méthode fournit une vue structurée de la fusion globale appliquée à l'ensemble de toutes les sources et des résultats partiels de la fusion marqués d'un sous-ensemble de sources. Dans ce travail, nous avons considéré les informations numériques représentées dans le cadre de la théorie des possibilités et nous avons utilisé trois sortes d'opérateurs pour construire le treillis de concepts. Une application dans le monde agricole, où la question de l'expert est d'estimer des valeurs des caractéristiques de pesticide provenant de plusieurs sources, pour calculer des indices environnementaux est détaillée pour évaluer la méthode de fusion proposée / Merging pieces of information into an interpretable and useful format is a tricky task even when an information fusion method is chosen. Fusion results may not be in suitable form for being used in decision analysis. This is generally due to the fact that information sources are heterogeneous and provide inconsistent information, which may lead to imprecise results. Several fusion operators have been proposed for combining uncertain information and they apply the fusion operator on the set of all sources and provide the resulting information. In this work, we studied and proposed a method to combine information using Formal Concept Analysis in particular Pattern Structures. This method allows us to associate any subset of sources with its information fusion result. Then once a fusion operator is chosen, a concept lattice is built. The concept lattice gives an interesting classification of fusion results and it keeps a track of the information origin. When the fusion global result is too imprecise, the method enables the users to identify what maximal subset of sources would support a more precise and useful result. Instead of providing a unique fusion result, the method yields a structured view of partial results labeled by subsets of sources. In this thesis, we studied the numerical information represented in the framework of possibility theory and we used three fusion operators to built the concept lattice. We applied this method in the context of agronomy when experts have to estimate several characteristics values coming from several sources for computing an environmental risk
|
50 |
Traitement de données numériques par analyse formelle de concepts et structures de patrons / Mining numerical data with formal concept analysis and pattern structuresKaytoue, Mehdi 22 April 2011 (has links)
Le sujet principal de cette thèse porte sur la fouille de données numériques et plus particulièrement de données d'expression de gènes. Ces données caractérisent le comportement de gènes dans diverses situations biologiques (temps, cellule, etc.). Un problème important consiste à établir des groupes de gènes partageant un même comportement biologique. Cela permet d'identifier les gènes actifs lors d'un processus biologique, comme par exemple les gènes actifs lors de la défense d'un organisme face à une attaque. Le cadre de la thèse s'inscrit donc dans celui de l'extraction de connaissances à partir de données biologiques. Nous nous proposons d'étudier comment la méthode de classification conceptuelle qu'est l'analyse formelle de concepts (AFC) peut répondre au problème d'extraction de familles de gènes. Pour cela, nous avons développé et expérimenté diverses méthodes originales en nous appuyant sur une extension peu explorée de l'AFC : les structures de patrons. Plus précisément, nous montrons comment construire un treillis de concepts synthétisant des familles de gènes à comportement similaire. L'originalité de ce travail est (i) de construire un treillis de concepts sans discrétisation préalable des données de manière efficace, (ii) d'introduire une relation de similarité entres les gènes et (iii) de proposer des ensembles minimaux de conditions nécessaires et suffisantes expliquant les regroupements formés. Les résultats de ces travaux nous amènent également à montrer comment les structures de patrons peuvent améliorer la prise de décision quant à la dangerosité de pratiques agricoles dans le vaste domaine de la fusion d'information / The main topic of this thesis addresses the important problem of mining numerical data, and especially gene expression data. These data characterize the behaviour of thousand of genes in various biological situations (time, cell, etc.).A difficult task consists in clustering genes to obtain classes of genes with similar behaviour, supposed to be involved together within a biological process.Accordingly, we are interested in designing and comparing methods in the field of knowledge discovery from biological data. We propose to study how the conceptual classification method called Formal Concept Analysis (FCA) can handle the problem of extracting interesting classes of genes. For this purpose, we have designed and experimented several original methods based on an extension of FCA called pattern structures. Furthermore, we show that these methods can enhance decision making in agronomy and crop sanity in the vast formal domain of information fusion
|
Page generated in 0.3487 seconds