Spelling suggestions: "subject:"formaldehyde""
1 |
Laserspektroskopische Untersuchung von druckinduzierten Effekten an Absorptionslinien des Formaldehyds im ultravioletten SpektralbereichSchulz, Marc. January 2004 (has links) (PDF)
Berlin, Techn. Univ., Diss., 2004. / Computerdatei im Fernzugriff.
|
2 |
Druckverbreiterung von SpektrallinienBurkart, Michael. January 2002 (has links) (PDF)
Heidelberg, Universiẗat, Diss., 2002.
|
3 |
Die Kernspinrelaxation von Formaldehyd an Oberflächen und in der GasphaseBechtel, Christian. January 2002 (has links) (PDF)
Heidelberg, Universiẗat, Diss., 2002.
|
4 |
HCHO, H 2 O 2 und CH 3 OOH in der TroposphäreStickler, Alexander. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2006--Mainz.
|
5 |
Untersuchungen zur Genotoxizität von Formaldehyd in vitro und in vivoSchmid, Oliver. January 2009 (has links)
Ulm, Univ., Diss., 2009.
|
6 |
Untersuchung der zeitlichen Entwicklung von Klopfzentren im Endgas eines Zweitakt-Ottomotors mittels zweidimensionaler laserinduzierter Fluoreszenz von FormaldehydBäuerle, Bernhard. January 2001 (has links)
Stuttgart, Univ., Diss., 2001.
|
7 |
Enzymbasierter Gassensor zur selektiven, direkten und kontinuierlichen Detektion von Formaldehyd /Achmann, Sabine. January 2009 (has links)
Zugl.: Bayreuth, Universiẗat, Diss., 2009.
|
8 |
Laserspektroskopische Untersuchung von druckinduzierten Effekten an Absorptionslinien des Formaldehyds im ultravioletten SpektralbereichSchulz, Marc. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
|
9 |
Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele / Carbon aerogels derived from acid-catalyzed and subcritcally dried resorcinol-formaldehyde aerogelsBrandt, Rainer January 2004 (has links) (PDF)
Resorcin-Formaldehyd (RF) Aerogele sind feinstporöse organische Stoffe, die über einen katalysierten Sol-Gel-Prozeß und anschließende Trocknung gewonnen werden. In ihrem chemischen Aufbau sind sie den Phenoplasten oder Phenolharzen sehr ähnlich. Durch Erhitzung auf über 900 K unter Schutzgas lassen sich die organischen Aerogele in elektrisch leitfähige Kohlenstoff (C) Aerogele umwandeln. Durch die Menge der wäßrigen Verdünnung, sowie die Art und Konzentration des eingesetzten Katalysators, läßt sich die Poren- und Partikelgröße sowie die Porosität des im Sol-Gel-Prozeß entstehenden Gels beeinflussen. Aufgrund dieser Möglichkeit, die Eigenschaften der RF- und C-Aerogele „maßzuschneidern”, bieten sich Einsatz- und Optimierungsmöglichkeiten bei zahlreichen technischen Anwendungen: z.B. bei Isolationsmaterialien, bei der Gaswäsche und in der Elektrochemie als Elektrodenmaterial für Batterien und Kondensatoren, sowie zur Elektrolyse. Bisherige systematische Untersuchungen unter Variation der Katalysator- und Monomerkonzentration beschränkten sich zumeist auf mit Na2CO3 basisch katalysierte RF- und C-Aerogele. Um metallische Verunreinigungen zu vermeiden, die sich beispielsweise beim Einsatz von C-Aerogelen als Substrat für Halbleiter störend auswirken, wurde in der vorliegenden Arbeit die Wirkung von carbonsauren Katalysatoren, insbesondere Essigsäure und vereinzelt auch Ameisensäure, auf die Strukturen und Eigenschaften der entstehenden Aerogele systematisch untersucht. Da im Hinblick auf spätere Anwendungen stets eine vereinfachte unterkritische Trocknung mit Austausch des Porenwassers durch Aceton durchgeführt wurde, wurde zum Vergleich auch eine entsprechend getrocknete Probenserie Na2CO3-katalysierter RF- und C-Aerogele hergestellt und untersucht. Strukturelle Untersuchungen mittels REM, Röntgenkleinwinkelstreuung (SAXS) und Gassorptionsmessungen ergaben ähnlich wie bei basisch katalysierten Aerogelen eine Abnahme des Primärpartikeldurchmessers mit steigendem Katalysatorgehalt und bestätigten damit die Wirksamkeit der protoneninduzierten Katalyse, welche ab etwa pH = 5 einsetzen sollte. Allerdings zeigte sich, daß der essigsaure Katalysator weniger wirksam ist als Na2CO3, so daß zur Herstellung sehr fein strukturierter Aerogele mit geringen Dichten und Strukturen im nm-Bereich extrem hohe Katalysatorkonzentrationen bis in die Größenordnung der Stoffmenge des wässrigen Lösungsmittels nötig sind. Wie auch bei basischer Katalyse mit geringer Katalysatorkonzentration, ergaben Variationen der Monomerkonzentration bei den essigsauer katalysierten Proben eine Poren- und Partikelverkleinerung mit zunehmendem Monomergehalt, jedoch mit größerer Verteilungsbreite als bei der basischen Katalyse. Bei der Na2CO3-Katalyse mit hohen Katalysatorkonzentrationen und bei unterkritischer Trocknung, kompensierte die mit sinkender Monomerkonzentration stark ansteigende trocknungsbedingte Schrumpfung die zu erwartende Porositätszunahme, so daß sich bei einheitlicher Katalysator- und verschiedenen Monomerkonzentrationen kaum strukturelle und Dichteänderungen einstellten. Die schwach essigsauer katalysierten Proben zeigten im Vergleich zu den basischen eine stark veränderte Morphologie. Während bei letzteren die Kontaktstellen zwischen den Primärpartikeln mit steigendem Partikeldurchmesser immer spärlicher ausfallen, gibt es bei carbonsauer katalysierten RF- und C-Aerogelen auch bei Primärpartikeln im µm-Bereich ein ausgeprägtes Halswachstum. Weiterhin haben die µm-großen Primärpartikel basisch katalysierter RF-Aerogele ein clusterartiges Erscheinungsbild, während man bei essigsauer katalysierten kugelrunde Primärpartikel findet. Zur Untersuchung des Gelierprozesses wurden einige Proben mit veränderten Gelierzeiten und –temperaturen hergestellt. So konnte festgestellt werden, daß die Verweildauer bei Zimmertemperatur im Zusammenhang mit dem Primärpartikelwachstum steht, während bei höheren Temperaturen die Vernetzung der Primärpartikeln untereinander gefördert wird. Zu kurze Gelierzeiten und ein Verzicht auf höhere Temperaturen führt zu einer sehr starken Schrumpfung bei der unterkritischen Trocknung und damit zu nahezu unporösen harzartigen Materialien. / Resorcinol-formaldehyde (RF) aerogels are highly porous materials obtained via an acidic or basic catalyzed sol-gel-process followed by a drying step. Concerning their chemistry, RF-aerogels are similarly constructed as phenolic resins. The organic RF-aerogels allow for conversion into electrically conductive carbon (C) aerogels by heating them up to at least 900K under inert conditions (pyrolysis). The size of the pores and particles as well as the porosity of the developing gel is controlled by the amount of the aqueous dilution as well as the type and the concentration of the used catalyst. The ability to ”tailor” the properties of the RF- and C-Aerogels allows for improvements in numerous technical applications, such as in thermal insulating, filtration and in the field of electrochemistry, where porous carbons act as electrode material in batteries and capacitors, as well as for electrochemical analysis purposes. In contrast to acidic catalysis, the effect of dilution and catalyst concentration on the structural properties of the resulting aerogels are well studied for the commonly used basic catalysis with sodium carbonate. Since metallic impurities are disadvantageous in several technical applications, for example in substrate materials for semiconductor technology, the influence of carbonic acids, especially acetic acid and in some cases formic acid, on the structures and properties of the developing gels was systematically investigated. In view of later applications, a simplified subcritically drying following the exchange of the pore water for acetone was carried out. As a reference a similarly dried series of Na2CO3-catalyzed RF- and C-aerogels was prepared and examined. As for basic catalyzed aerogels, structural investigations via SEM and small angle X-ray scattering (SAXS) show the reduction of the particle diameter with increasing catalyst concentration and confirm the effectiveness of the H3O+-catalysis, which should start at a pH-value of about 5. However, the acidic catalyst is less effective with respect to Na2CO3, so that huge amounts of catalyst are required to obtain acetic acid catalyzed aerogels with a nanometer sized structure and low densities. Alike in basic catalysis with small catalyst concentrations, the pore and particle sizes decrease with increasing monomer concentration. However, the evaluation of the SAXS-measurements suggests a broader pore and particle size distribution for the acidic catalyzed aerogels. In Na2CO3-catalysis with large catalyst concentrations, the expected increase of porosity with decreasing monomer concentration was found to be compensated by an increasing shrinkage due to capillary stresses upon subcritical drying. Consequently, different monomer concentrations led to similar structures and densities if the same catalyst concentration was used. The morphology of the micron structured basic and acidic catalyzed aerogels is different. In case of basic catalysis the transitions between the primary particles become more and more sparse with increasing particle size and the particles have a cluster-like appearance. In contrast, the carbonic acid catalyzed aerogels have thick ”necks” and the particles look like perfect spheres. To investigate the gelation process some gels were prepared at different aging times and temperatures. The results revealed, that the time at room temperature is connected with the growth of the primary particles, whereas the connectivity of the primary particles increases with increasing gelation temperature. A short gelation time and a gelation without higher temperatures leads to a very large shrinkage in the following subcritical drying step. Thus almost non-porous and resin-like samples are derived.
|
10 |
Entwicklung und Generierung von faserverstärkten Formmassen auf der Basis eines neuartigen MelaminetherharzesSommer, Maria-Kristin January 2008 (has links)
Zugl.: Stuttgart, Univ., Diss., 2008
|
Page generated in 0.0563 seconds