• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some Initiatives in Calculus Teaching

Abramovitz, Buma, Berezina, Miryam, Berman, Abraham, Shvartsman, Ludmila 10 April 2012 (has links) (PDF)
In our experience of teaching Calculus to engineering undergraduates we have had to grapple with many different problems. A major hurdle has been students’ inability to appreciate the importance of the theory. In their view the theoretical part of mathematics is separate from the computing part. In general, students also believe that they can pass their exams even though they do not have a real understanding of the theory behind the problems they are required to solve. In an effort to surmount these difficulties we tried to find ways to make students better understand the theoretical part of Calculus. This paper describes our experience of teaching Calculus. It reports on the continuation of our previous research.
2

Conjecturing (and Proving) in Dynamic Geometry after an Introduction of the Dragging Schemes

Baccaglini-Frank, Anna 11 April 2012 (has links) (PDF)
This paper describes some results of a research study on conjecturing and proving in a dynamic geometry environment (DGE), and it focuses on particular cognitive processes that seem to be induced by certain uses of tools available in Cabri (a particular DGE). Building on the work of Arzarello and Olivero (Arzarello et al., 1998, 2002; Olivero, 2002), we have conceived a model describing some cognitive processes that may occur during the production of conjectures and proofs in a DGE and that seem to be related to the use of specific dragging schemes, in particular to the use of the scheme we refer to as maintaining dragging. This paper contains a description of aspects of the theoretical model we have elaborated for describing such cognitive processes, with specific attention towards the role of the dragging schemes, and an example of how the model can be used to analyze students’ explorations.
3

Conjecturing (and Proving) in Dynamic Geometry after an Introduction of the Dragging Schemes

Baccaglini-Frank, Anna 11 April 2012 (has links)
This paper describes some results of a research study on conjecturing and proving in a dynamic geometry environment (DGE), and it focuses on particular cognitive processes that seem to be induced by certain uses of tools available in Cabri (a particular DGE). Building on the work of Arzarello and Olivero (Arzarello et al., 1998, 2002; Olivero, 2002), we have conceived a model describing some cognitive processes that may occur during the production of conjectures and proofs in a DGE and that seem to be related to the use of specific dragging schemes, in particular to the use of the scheme we refer to as maintaining dragging. This paper contains a description of aspects of the theoretical model we have elaborated for describing such cognitive processes, with specific attention towards the role of the dragging schemes, and an example of how the model can be used to analyze students’ explorations.
4

Some Initiatives in Calculus Teaching

Abramovitz, Buma, Berezina, Miryam, Berman, Abraham, Shvartsman, Ludmila 10 April 2012 (has links)
In our experience of teaching Calculus to engineering undergraduates we have had to grapple with many different problems. A major hurdle has been students’ inability to appreciate the importance of the theory. In their view the theoretical part of mathematics is separate from the computing part. In general, students also believe that they can pass their exams even though they do not have a real understanding of the theory behind the problems they are required to solve. In an effort to surmount these difficulties we tried to find ways to make students better understand the theoretical part of Calculus. This paper describes our experience of teaching Calculus. It reports on the continuation of our previous research.

Page generated in 0.0737 seconds