• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RESPOSTAS FISIOLÓGICAS E BIOQUÍMICAS AO ESTRESSE DE ALUMÍNIO E FÓSFORO EM GENÓTIPOS DE BATATA (Solanum tuberosum) / BIOCHEMICAL AND PHYSIOLOGICAL RESPONSE OF POTATO GENOTYPES IN RELATION TO ALUMINUM AND PHOSPHORUS STRESS

Rossato, Liana Verônica 14 March 2014 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Aluminum (Al) toxicity and phosphorus (P) deficiency often coexist in acid soils that severely limit crop growth and production, including potato (Solanum tuberosum). Understanding the physiological mechanisms relating to plant Al and P interactions should facilitate the development of more Al-tolerant and/or P-efficient crops. The objective of this study was to investigate if P- efficiency were related to Al-tolerance and if P- efficiency was related to acid phosphatase activity. Eight potato genotypes (SMIC148-A, Dakota Rose, S. microdontum, SMINIA793101-3, SMIB106-7, SMIF212-3, SMIG145-1 and SMIJ319-7) showing different responses and/or efficiency to P were grown in a nutrient solution (pH 4.0) with 0 and 200 mg Al L−1 and P-starvation. Based on shoot length, nutrient solution consumption, and total fresh and dry weight, the potato genotypes were classified as Al-tolerant (SMIF212-3 (more tolerant), SMIC148-A and S. microdontum), Al-intermediate (SMINIA793101-3 and SMIB106-7) and Al-sensitive (Dakota Rose, SMIJ319-7 (more sensitive) and SMIG145-1). The Al-tolerance in potato genotypes appears to be related to the increase in P concentration in the tissues. The Al tolerance in genotypes (SMIC148-A and S. microdontum) might be associated with higher tissue Al immobilization due to the higher tissue P content, mainly in the leaves. The Al sensitivity in the potato genotypes under P-starvation condition was associated with decreasing P utilization and translocation efficiencies. Furthermore, the increase of Al accumulation affected the rate of uptake and distribution of nutrients in the different plant parts (roots, stem, leaf, stolon and tuber) of potato genotypes. The Al-tolerance in the SMIC148-A, S. microdontum and SMIF212-3 genotypes may be connected with highest levels of nutrients in the roots and leaves. Among the eight previously analyzed genotypes, four genotypes with contrasting Al-tolerance and P-efficiency/or responsive (Al-tolerant: SMIC148-A [NER] and SMIF212-3 [ENR]; Al-sensitive: Dakota Rose [ER] and SMIG145-1 [NENR]) were utilized to investigate the effects of Al-P interactions. Potato genotypes were grown in a nutrient solution (pH 4.0) with 0, 25 and 125 μM P and 0 or 200 mg Al L−1. In this second experiment the P supply did not influence on Al tolerance response. In both experiments, it was not observed a straight relationship between tissues APase activities and P utilization efficiency (PUE). With the objective of checking whether Al oxidative stress differs in potato genotypes, Dakota Rose (Al-sensitive) and SMIC148-A (Al-tolerant), which present distinct degrees of Al- avoidance, were cultivated in a split root system for seven days with five treatments of varying concentrations and locations of Al. In general, the Al exposure caused a reduction in growth parameters in both Al-tolerant and Al-sensitive genotypes. Furthermore, it was observed an increase in Al concentration in both Al-treated and Al-untreated root half. In both genotypes was observed decrease in the P concentration in the Al-treated root half, however, in the Al-untreated root half was observed an increased in the P concentration, mainly in the Al-tolerant genotype. In both genotypes was observed an increase in the P concentration in stem in all Al treatments, however, only in the Al-tolerant genotype was observed an increased in the leaf P concentration. In addition, in the Al-tolerant genotype the biochemistry parameters were lower affected than Al-sensitive genotype. In Al-tolerant genotype was observed an increase in the total chlorophyll and carotenoids concentration whereas in the Al-sensitive genotype was observed a decrease with Al exposure. In Al-sensitive genotype was observed an increased in the leaf and root lipid peroxidation in plants exposed at higher Al treatments. On the other hand, in the Al-tolerant genotype was not observed increase in the plants exposed at higher Al treatments. However, this difference between potato genotypes can be not related to antioxidant enzymes activities. In both genotypes, in general, the Al exposure caused a decreased in the root APX activity, an increased in the GPX activity and a slight increased in CAT activity. On the other hand, the Al-tolerance in the SMIC148-A can be associated to lower Al translocation for leaf mainly in the plants only one root half was exposed at Al and the higher ability this genotype in the remobilization P from Al-treated to Al-untreated root half. / A toxicidade do alumínio (Al) e a deficiência de fósforo (P) frequentemente coexistem em solos ácidos, sendo fatores limitantes para o crescimento e produção das plantas, incluindo a batata (Solanum tuberosum). A compreensão dos mecanismos fisiológicos relacionados à interação entre Al e P pode facilitar a obtenção de genótipos mais tolerantes ao Al e/ou eficientes no uso de P. O objetivo deste estudo foi verificar se genótipos eficientes no uso de P são tolerantes ao Al e se essa eficiência está vinculada à atividade de fosfatases ácidas. Oito genótipos de batata (SMIC148-A, Dakota Rose, Solanum microdontum, SMINIA793101-3, SMIB106-7, SMIF212-3, SMIJ319-7 e SMIG145-1), demostrando diferentes respostas ao P e/ou eficiência no uso de P foram cultivados em solução nutritiva (pH 4,0) com 0 e 200 mg de Al L−1 na ausência de P. Através da avaliação de diferentes parâmetros de crescimento, como comprimento da parte aérea, consumo de solução nutritiva, e massa fresca e seca total, os genótipos de batata foram classificados como tolerantes (SMIF212-3 (mais tolerante), SMIC148-A e S. microdontum), intermédiarios (SMINIA793101-3 e SMIB106-7) e sensíveis (Dakota Rose , SMIJ319-7 (mais sensível) e SMIG145-1) ao Al. A tolerância ao Al nos genótipos de batata parece estar relacionada com o aumento da concentração de P nos tecidos. Nos genótipos tolerantes ao Al (SMIC148-A e S. microdontum) foi verificado um aumento na concentração de P com o aumento da concentração de Al, principalmente nas folhas. A sensibilidade ao Al em genótipos de batata sob deficiência de P pode estar associada ao decréscimo na eficiência de utilização e translocação do P. Além disso, o aumento da concentração de Al afetou a taxa de absorção e distribuição dos nutrientes nas diferentes partes das plantas (raízes, caule, folhas, estolões e tubérculos). A tolerância ao Al nos genótipos SMIC148-A, S. microdontum e SMIF212-3 pode estar relacionada aos maiores níveis de nutrientes nas raízes e folhas. Entre os oito genótipos analisados anteriormente, quatro genótipos contrastantes quanto à tolerância ao Al e eficiência ao P (tolerante ao Al: SMIC148-A [NER] e SMIF212-3 [ENR]; sensível ao Al: Dakota Rose [ER] e SMIJ319-7 [NENR]) foram selecionados e utilizados para verificar os efeitos da interação entre Al e P. Os genótipos de batata foram cultivados em solução nutritiva (pH 4,0) com 0, 25 e 125 μM P e 0 ou 200 mg de Al L−1. Em geral, o aumento da concentração de P não influenciou na tolerância ao Al. Em ambos os experimentos, a atividade da fosfatase ácida não foi correlacionada à eficiência no uso do P. Com o objetivo de checar se o estresse oxidativo provocado pelo Al difere entre os genótipos Dakota Rose (sensível ao Al) e SMIC148-A (tolerante ao Al), os quais apresentam distinto grau de escape ao Al, foram cultivados em sistema de raízes divididas por sete dias, com cinco tratamentos de variação de concentração e localização de Al. De modo geral, a exposição ao Al causou uma redução nos parâmetros de crescimento tanto no genótipo tolerante quanto no sensível. Além disso, foi observado aumento na concentração de Al tanto na metade da raiz exposta quanto na metade da raiz não exposta ao Al. Em ambos os genótipos foi observado decréscimo na concentração de P na metade da raiz tratada com Al, contudo na metade da raiz não exposta ao Al foi observado aumento na concentração de P, principalmente no genótipo tolerante. Tanto no genótipo sensível quanto no genótipo tolerante ocorreu aumento da concentração de P no caule em plantas expostas ao Al, contudo, somente no genótipo tolerante observou-se aumento na concentração de P na folha. Além disso, no genótipo tolerante, os parâmetros bioquímicos avaliados foram menos afetados pelo Al do que no genótipo sensível. No genótipo tolerante foi observado aumento da concentração de clorofilas e carotenóides, enquanto que, no genótipo sensível foi observado decréscimo com a exposição ao Al. No genótipo sensível foi observado aumento da peroxidação lipídica nas raízes e folhas de plantas expostas às maiores doses de Al. Entretanto, no genótipo tolerante a mesma resposta não foi observada. Essas diferenças entre os genótipos não poderam ser associadas à atividade das enzimas antioxidantes. Tanto no genótipo tolerante quanto no sensível a exposição ao Al aumentou a atividade da POD e, de modo geral, promoveu um ligeiro aumento na atividade da CAT e diminuiu a atividade da APX na raiz. Por outro lado, a tolerância ao Al no genótipo SMIC148-A pode estar associada à menor translocação de Al para as folhas principalmente em plantas onde somente metade da raiz foi exposta ao Al e à maior habilidade de remobilização do P de raízes expostas ao Al para as raízes não expostas.

Page generated in 0.1775 seconds