• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Un système de visualisation pour l'extraction, l'évaluation, et l'exploration interactives des règles d'association.

Blanchard, Julien 24 November 2005 (has links) (PDF)
De nombreuses méthodes d'Extraction de Connaissances dans les Données (ECD) produisent des résultats sous forme de règles. Les règles ont l'avantage de représenter les connaissances de manière explicite, ce qui en fait des modèles tout à fait intelligibles pour un utilisateur. Elles sont d'ailleurs au fondement de la plupart des théories de<br />représentation de la connaissance en sciences cognitives. En fouille de données, la principale technique à base de règles est l'extraction de règles d'association, qui a donné lieu à de nombreux travaux de recherche.<br /><br />La limite majeure des algorithmes d'extraction de règles d'association est qu'ils produisent communément de grandes quantités de règles, dont beaucoup se révèlent même sans aucun intérêt pour l'utilisateur. Ceci s'explique par la nature non supervisée de ces algorithmes : ne considérant aucune variable endogène, ils envisagent dans les règles toutes les combinaisons possibles de variables. Dans la pratique, l'utilisateur ne peut pas exploiter les résultats tels quels directement à la sortie des algorithmes. Un post-traitement consistant en une seconde opération de fouille se<br />révèle indispensable pour valider les volumes de règles et découvrir des connaissances utiles. Cependant, alors que la fouille de données est effectuée automatiquement par des algorithmes combinatoires, la fouille de règles est une<br />tâche laborieuse à la charge de l'utilisateur.<br /><br />La thèse développe deux approches pour assister l'utilisateur dans le post-traitement des règles d'association :<br />– la mesure de la qualité des règles par des indices numériques,<br />– la supervision du post-traitement par une visualisation interactive.<br /><br />Pour ce qui concerne la première approche, nous formalisons la notion d'indice de qualité de règles et réalisons une classification inédite des nombreux indices de la littérature, permettant d'aider l'utilisateur à choisir les indices pertinents pour son besoin. Nous présentons également trois nouveaux indices aux propriétés originales : l'indice<br />probabiliste d'écart à l'équilibre, l'intensité d'implication entropique, et le taux informationnel. Pour ce qui concerne la seconde approche, nous proposons une méthodologie de visualisation pour l'exploration interactive des règles. Elle<br />est conçue pour faciliter la tâche de l'utilisateur confronté à de grands ensembles de règles en prenant en compte ses capacités de traitement de l'information. Dans cette méthodologie, l'utilisateur dirige la découverte de connaissances<br />par des opérateurs de navigation adaptés en visualisant des ensembles successifs de règles décrits par des indices de qualité.<br /><br />Les deux approches sont intégrées au sein de l'outil de visualisation ARVis (Association Rule Visualization) pour l'exploration interactive des règles d'association. ARVis implémente notre méthodologie au moyen d'une représentation<br />3D, inédite en visualisation de règles, mettant en valeur les indices de qualité. De plus, ARVis repose sur un algorithme spécifique d'extraction sous contraintes permettant de générer les règles interactivement au fur et à mesure de la navigation de l'utilisateur. Ainsi, en explorant les règles, l'utilisateur dirige à la fois l'extraction et le<br />post-traitement des connaissances.
2

Fouille de connaissances en diagnostic mammographique par ontologie et règles d'association / Ontologies and association rules knowledge mining, case study : Mammographic domain

Idoudi, Rihab 24 January 2017 (has links)
Face à la complexité significative du domaine mammographique ainsi que l'évolution massive de ses données, le besoin de contextualiser les connaissances au sein d'une modélisation formelle et exhaustive devient de plus en plus impératif pour les experts. C'est dans ce cadre que s'inscrivent nos travaux de recherche qui s'intéressent à unifier différentes sources de connaissances liées au domaine au sein d'une modélisation ontologique cible. D'une part, plusieurs modélisations ontologiques mammographiques ont été proposées dans la littérature, où chaque ressource présente une perspective distincte du domaine d'intérêt. D'autre part, l'implémentation des systèmes d'acquisition des mammographies rend disponible un grand volume d'informations issues des faits passés, dont la réutilisation devient un enjeu majeur. Toutefois, ces fragments de connaissances, présentant de différentes évidences utiles à la compréhension de domaine, ne sont pas interopérables et nécessitent des méthodologies de gestion de connaissances afin de les unifier. C'est dans ce cadre que se situe notre travail de thèse qui s'intéresse à l'enrichissement d'une ontologie de domaine existante à travers l'extraction et la gestion de nouvelles connaissances (concepts et relations) provenant de deux courants scientifiques à savoir: des ressources ontologiques et des bases de données comportant des expériences passées. Notre approche présente un processus de couplage entre l'enrichissement conceptuel et l'enrichissement relationnel d'une ontologie mammographique existante. Le premier volet comporte trois étapes. La première étape dite de pré-alignement d'ontologies consiste à construire pour chaque ontologie en entrée une hiérarchie des clusters conceptuels flous. Le but étant de réduire l'étape d'alignement de deux ontologies entières en un alignement de deux groupements de concepts de tailles réduits. La deuxième étape consiste à aligner les deux structures des clusters relatives aux ontologies cible et source. Les alignements validés permettent d'enrichir l'ontologie de référence par de nouveaux concepts permettant d'augmenter le niveau de granularité de la base de connaissances. Le deuxième processus s'intéresse à l'enrichissement relationnel de l'ontologie mammographique cible par des relations déduites de la base de données de domaine. Cette dernière comporte des données textuelles des mammographies recueillies dans les services de radiologies. Ce volet comporte ces étapes : i) Le prétraitement des données textuelles ii) l'application de techniques relatives à la fouille de données (ou extraction de connaissances) afin d'extraire des expériences de nouvelles associations sous la forme de règles, iii) Le post-traitement des règles générées. Cette dernière consiste à filtrer et classer les règles afin de faciliter leur interprétation et validation par l'expert vi) L'enrichissement de l'ontologie par de nouvelles associations entre les concepts. Cette approche a été mise en 'uvre et validée sur des ontologies mammographiques réelles et des données des patients fournies par les hôpitaux Taher Sfar et Ben Arous. / Facing the significant complexity of the mammography area and the massive changes in its data, the need to contextualize knowledge in a formal and comprehensive modeling is becoming increasingly urgent for experts. It is within this framework that our thesis work focuses on unifying different sources of knowledge related to the domain within a target ontological modeling. On the one hand, there is, nowadays, several mammographic ontological modeling, where each resource has a distinct perspective area of interest. On the other hand, the implementation of mammography acquisition systems makes available a large volume of information providing a decisive competitive knowledge. However, these fragments of knowledge are not interoperable and they require knowledge management methodologies for being comprehensive. In this context, we are interested on the enrichment of an existing domain ontology through the extraction and the management of new knowledge (concepts and relations) derived from two scientific currents: ontological resources and databases holding with past experiences. Our approach integrates two knowledge mining levels: The first module is the conceptual target mammographic ontology enrichment with new concepts extracting from source ontologies. This step includes three main stages: First, the stage of pre-alignment. The latter consists on building for each input ontology a hierarchy of fuzzy conceptual clusters. The goal is to reduce the alignment task from two full ontologies to two reduced conceptual clusters. The second stage consists on aligning the two hierarchical structures of both source and target ontologies. Thirdly, the validated alignments are used to enrich the reference ontology with new concepts in order to increase the granularity of the knowledge base. The second level of management is interested in the target mammographic ontology relational enrichment by novel relations deducted from domain database. The latter includes medical records of mammograms collected from radiology services. This section includes four main steps: i) the preprocessing of textual data ii) the application of techniques for data mining (or knowledge extraction) to extract new associations from past experience in the form of rules, iii) the post-processing of the generated rules. The latter is to filter and classify the rules in order to facilitate their interpretation and validation by expert, vi) The enrichment of the ontology by new associations between concepts. This approach has been implemented and validated on real mammographic ontologies and patient data provided by Taher Sfar and Ben Arous hospitals. The research work presented in this manuscript relates to knowledge using and merging from heterogeneous sources in order to improve the knowledge management process.

Page generated in 0.1054 seconds