Spelling suggestions: "subject:"fouilles visuelle dde données"" "subject:"fouilles visuelle dee données""
1 |
Etude des projections de données comme support interactif de l’analyse visuelle de la structure de données de grande dimension / Study of multidimensional scaling as an interactive visualization to help the visual analysis of high dimensional dataHeulot, Nicolas 04 July 2014 (has links)
Acquérir et traiter des données est de moins en moins coûteux, à la fois en matériel et en temps, mais encore faut-il pouvoir les analyser et les interpréter malgré leur complexité. La dimensionnalité est un des aspects de cette complexité intrinsèque. Pour aider à interpréter et à appréhender ces données le recours à la visualisation est indispensable au cours du processus d’analyse. La projection représente les données sous forme d’un nuage de points 2D, indépendamment du nombre de dimensions. Cependant cette technique de visualisation souffre de distorsions dues à la réduction de dimension, ce qui pose des problèmes d’interprétation et de confiance. Peu d’études ont été consacrées à la considération de l’impact de ces artefacts, ainsi qu’à la façon dont des utilisateurs non-familiers de ces techniques peuvent analyser visuellement une projection. L’approche soutenue dans cette thèse repose sur la prise en compte interactive des artefacts, afin de permettre à des analystes de données ou des non-experts de réaliser de manière fiable les tâches d’analyse visuelle des projections. La visualisation interactive des proximités colore la projection en fonction des proximités d’origine par rapport à une donnée de référence dans l’espace des données. Cette technique permet interactivement de révéler les artefacts de projection pour aider à appréhender les détails de la structure sous-jacente aux données. Dans cette thèse, nous revisitons la conception de cette technique et présentons ses apports au travers de deux expérimentations contrôlées qui étudient l’impact des artefacts sur l’analyse visuelle des projections. Nous présentons également une étude de l’espace de conception d’une technique basée sur la métaphore de lentille et visant à s’affranchir localement des problématiques d’artefacts de projection. / The cost of data acquisition and processing has radically decreased in both material and time. But we also need to analyze and interpret the large amounts of complex data that are stored. Dimensionality is one aspect of their intrinsic complexity. Visualization is essential during the analysis process to help interpreting and understanding these data. Projection represents data as a 2D scatterplot, regardless the amount of dimensions. However, this visualization technique suffers from artifacts due to the dimensionality reduction. Its lack of reliability implies issues of interpretation and trust. Few studies have been devoted to the consideration of the impact of these artifacts, and especially to give feedbacks on how non-expert users can visually analyze projections. The main approach of this thesis relies on an taking these artifacts into account using interactive techniques, in order to allow data scientists or non-expert users to perform a trustworthy visual analysis of projections. The interactive visualization of the proximities applies a coloring of the original proximities relatives to a reference in the data-space. This interactive technique allows revealing projection artifacts in order to help grasping details of the underlying data-structure. In this thesis, we redesign this technique and we demonstrate its potential by presenting two controlled experiments studying the impact of artifacts on the visual analysis of projections. We also present a design-space based on the lens metaphor, in order to improve this technique and to locally visualize a projection free of artifacts issues.
|
2 |
A virtual reality-based approach for interactive and visual mining of association rulesBen Said, Zohra 25 October 2012 (has links) (PDF)
Cette thèse se situe à l'intersection de deux domaines actifs de recherche: la fouille de règles d'association et la réalité virtuelle. Les limites majeures des algorithmes d'extraction de règles d'association sont (i) la grande quantité de règles produites et (ii) leur faible qualité. Dans la littérature, plusieurs solutions ont été proposées pour remédier à ce problème, comme le post-traitement de règles d'association qui permet la validation des règles et l'extraction de connaissances utiles. Cependant, alors que les règles sont extraites automatiquement par des algorithmes combinatoires, le post-traitement de règles est effectué par l'utilisateur. La visualisation peut aider l'utilisateur à faire face à une grande quantité de règles en les représentants sous forme visuelle. Afin de trouver les connaissances pertinentes dans les représentations visuelles, l'utilisateur doit interagir avec la représentation de règles d'association. Par conséquent, il est essentiel de fournir à l'utilisateur des techniques d'interaction efficaces. Ce travail aborde deux problèmes essentiels : la représentation de règles d'association afin de permettre à l'utilisateur de détecter très rapidement les règles les plus intéressantes et l'exploration interactive des règles. Le premier exige une métaphore intuitive de représentation de règles d'association. Le second nécessite un processus d'exploration très interactif permettant à l'utilisateur de fouiller l'espace de règles en se concentrant sur les règles intéressantes. Les principales contributions de ce travail peuvent être résumées comme suit : (i) Nous proposons une nouvelle classification pour les techniques de fouille visuelles de données, basée sur des représentations en 3D et des techniques d'interaction. Une telle classification aide l'utilisateur à choisir une configuration pertinente pour son application. (ii) Nous proposons une nouvelle métaphore de visualisation pour les règles d'association qui prend en compte les attributs de la règle, la contribution de chacun d'eux et leurs corrélations. (iii) Nous proposons une méthodologie pour l'exploration interactive de règles d'association. Elle est conçue pour faciliter la tâche de l'utilisateur face à des grands ensembles de règles en tenant en compte ses capacités cognitives. Dans cette méthodologie, des algorithmes locaux sont utilisés pour recommander les meilleures règles basées sur une règle de référence proposée par l'utilisateur. Ensuite, l'utilisateur peut à la fois diriger l'extraction et le post-traitement des règles en utilisant des opérateurs d'interaction appropriés. (iv) Nous avons développé un outil qui implémente toutes les fonctionnalités de la méthodologie. Notre outil est basé sur un affichage intuitif dans un environnement virtuel et prend en charge plusieurs méthodes d'interaction.
|
3 |
Real-time Distributed Computation of Formal Concepts and Analytics / Calcul distribué des concepts formels en temps réel et analyse visuelleDe Alburquerque Melo, Cassio 19 July 2013 (has links)
Les progrès de la technologie pour la création, le stockage et la diffusion des données ont considérablement augmenté le besoin d’outils qui permettent effectivement aux utilisateurs les moyens d’identifier et de comprendre l’information pertinente. Malgré les possibilités de calcul dans les cadres distribuées telles que des outils comme Hadoop offrent, il a seulement augmenté le besoin de moyens pour identifier et comprendre les informations pertinentes. L’Analyse de Concepts Formels (ACF) peut jouer un rôle important dans ce contexte, en utilisant des moyens plus intelligents dans le processus d’analyse. ACF fournit une compréhension intuitive de la généralisation et de spécialisation des relations entre les objets et leurs attributs dans une structure connue comme un treillis de concepts. Cette thèse aborde le problème de l’exploitation et visualisation des concepts sur un flux de données. L’approche proposée est composé de plusieurs composants distribués qui effectuent le calcul des concepts d’une transaction de base, filtre et transforme les données, les stocke et fournit des fonctionnalités analytiques pour l’exploitation visuelle des données. La nouveauté de notre travail consiste à: (i) une architecture distribuée de traitement et d’analyse des concepts et l’exploitation en temps réel, (ii) la combinaison de l’ACF avec l’analyse des techniques d’exploration, y compris la visualisation des règles d’association, (iii) des nouveaux algorithmes pour condenser et filtrage des données conceptuelles et (iv) un système qui met en œuvre toutes les techniques proposées, Cubix, et ses étude de cas en biologie, dans la conception de systèmes complexes et dans les applications spatiales. / The advances in technology for creation, storage and dissemination of data have dramatically increased the need for tools that effectively provide users with means of identifying and understanding relevant information. Despite the great computing opportunities distributed frameworks such as Hadoop provide, it has only increased the need for means of identifying and understanding relevant information. Formal Concept Analysis (FCA) may play an important role in this context, by employing more intelligent means in the analysis process. FCA provides an intuitive understanding of generalization and specialization relationships among objects and their attributes in a structure known as a concept lattice. The present thesis addresses the problem of mining and visualising concepts over a data stream. The proposed approach is comprised of several distributed components that carry the computation of concepts from a basic transaction, filter and transforms data, stores and provides analytic features to visually explore data. The novelty of our work consists of: (i) a distributed processing and analysis architecture for mining concepts in real-time; (ii) the combination of FCA with visual analytics visualisation and exploration techniques, including association rules analytics; (iii) new algorithms for condensing and filtering conceptual data and (iv) a system that implements all proposed techniques, called Cubix, and its use cases in Biology, Complex System Design and Space Applications.
|
4 |
VizAssist : un assistant utilisateur pour le choix et le paramétrage des méthodes de fouille visuelle de données / VizAssist : a user assistant for the selection and parameterization of the visual data mining methodsGuettala, Abdelheq Et-Tahir 05 September 2013 (has links)
Nous nous intéressons dans cette thèse au problème de l’automatisation du processus de choix et de paramétrage des visualisations en fouille visuelle de données. Pour résoudre ce problème, nous avons développé un assistant utilisateur "VizAssist" dont l’objectif principal est de guider les utilisateurs (experts ou novices) durant le processus d’exploration et d’analyse de leur ensemble de données. Nous illustrons, l’approche sur laquelle s’appuie VizAssit pour guider les utilisateurs dans le choix et le paramétrage des visualisations. VizAssist propose un processus en deux étapes. La première étape consiste à recueillir les objectifs annoncés par l’utilisateur ainsi que la description de son jeu de données à visualiser, pour lui proposer un sous ensemble de visualisations candidates pour le représenter. Dans cette phase, VizAssist suggère différents appariements entre la base de données à visualiser et les visualisations qu’il gère. La seconde étape permet d’affiner les différents paramétrages suggérés par le système. Dans cette phase, VizAssist utilise un algorithme génétique interactif qui a pour apport de permettre aux utilisateurs d’évaluer et d’ajuster visuellement ces paramétrages. Nous présentons enfin les résultats de l’évaluation utilisateur que nous avons réalisé ainsi que les apports de notre outil à accomplir quelques tâches de fouille de données. / In this thesis, we deal with the problem of automating the process of choosing an appropriate visualization and its parameters in the context of visual data mining. To solve this problem, we developed a user assistant "VizAssist" which mainly assist users (experts and novices) during the process of exploration and analysis of their dataset. We illustrate the approach used by VizAssit to help users in the visualization selection and parameterization process. VizAssist proposes a process based on two steps. In the first step, VizAssist collects the user’s objectives and the description of his dataset, and then proposes a subset of candidate visualizations to represent them. In this step, VizAssist suggests a different mapping between the database for representation and the set of visualizations it manages. The second step allows user to adjust the different mappings suggested by the system. In this step, VizAssist uses an interactive genetic algorithm to allow users to visually evaluate and adjust such mappings. We present finally the results that we have obtained during the user evaluation that we performed and the contributions of our tool to accomplish some tasks of data mining.
|
Page generated in 0.107 seconds