• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Engineering Characteristics of Sensitive Marine Clays - Examples of Clays in Eastern Canada

Nader, Athir January 2014 (has links)
Sensitive marine clay in Ottawa is a challenging soil for geotechnical engineers. This type of clay behaves differently than other soils in Canada or other parts of the world. They also have different engineering characteristic values in comparison to other clays. Cone penetration testing in sensitive marine clays is also different from that carried out in other soils. The misestimation of engineering characteristics from cone penetration testing can result. Temperature effects have been suspected as the reason for negative readings and erroneous estimations of engineering characteristics from cone penetration testing. Furthermore, the applicability of correlations between cone penetration test (CPT) results and engineering characteristics is ambiguous. Moreover, it is important that geotechnical engineers who need to work with these clays have background information on their engineering characteristics. This thesis provides comprehensive information on the engineering characteristics and behaviour of sensitive marine clays in Ottawa. This information will give key information to geotechnical engineers who are working with these clays on their behaviour. For the purpose of this research, fifteen sites in the Ottawa area are taken into consideration. These sites included alternative technical data from cone and standard penetration tests, undisturbed samples, field vanes, and shear wave velocity measurements. Laboratory testing carried out for these sites has resulted in acquiring engineering parameters of the marine clay, such as preconsolidation pressure, overconsolidation ratio, compression and recompression indexes, secondary compression index, coefficient of consolidation, hydraulic conductivity, clay fraction, porewater chemistry, specific gravity, plasticity, moisture content, unit weight, void ratio, and porosity. This thesis also discusses other characteristics of sensitive marine clays in Ottawa, such as their activity, sensitivity, structure, interface shear behaviour, and origin and sedimentation. Furthermore, for the purpose of increasing local experience with the use of cone and ball penetrometers in sensitive marine clays in Ottawa, three types of penetrometer tips are used in the Canadian Geotechnical Research Site No. 1 located in south-west Ottawa: 36 mm cone tip, and 40 mm and 113 mm ball tips. The differences in their response in sensitive marine clays will be discussed. The temperature effects on the penetrometer equipment are also studied. The differences in the effect of temperature on these tips are discussed. Correlations between the penetrometer results and engineering characteristics of Ottawa's clays are verified. The applicability of correlations between the testing results and engineering characteristics of sensitive marine clays in Ottawa is also presented in this thesis. Two correlations from the Canadian Foundation Engineering Manual are examined. One of these correlations is between the N60 values from standard penetration testing and undrained shear strength. The other correlation is between the shear wave velocity measurement and site class. Temperature corrections are suggested and discussed for penetrometer equipment according to laboratory calibrations. The significance of the effects due to radical temperature changes in Canada and Ottawa is discussed. Some of the main findings from this research are as follows. • The Canadian Foundation Engineering Manual presents a correlation between standard penetration tests (SPTs) and the undrained shear strength of soils. This relationship may not be applicable to sensitive marine clays in Ottawa. • Another correlation between the site class, shear wave velocity, and undrained shear strength is presented by this same manual which may not be applicable to sensitive marine clays in Ottawa. • The rotation rate for field vane testing as recommended by ASTM D2573 is slow for sensitive marine clays in Ottawa. • Correction factors applied to undrained shear strength from laboratory vane tests may not result in comparable values with the undrained shear strength obtained by using field vane tests. • Loading schemes in consolidation or oedometer testing may affect the quality of the targeted results. • Temperature corrections should be applied to penetrometer recordings to compensate for the drift in the results of these recordings due to temperature changes. • The secondary compression index to compression index ratio presented in the literature may not be the value obtained from this research.
12

Modelagens física e numérica de solo colapsível reforçado por colunas de solo laterítico compactado / Physical and numerical modelling of a collapsible soil reinforced with compacted lateritic soil columns

Pereira, Mara Sarro 05 July 2018 (has links)
Normalmente fundações diretas não são utilizadas em solos colapsáveis devido à falta de soluções econômicas e eficientes para melhorar essa condição crítica de terreno. Quando estes solos são inundados, a água afeta sua estrutura provocando uma redução de volume, e consequentemente grandes recalques nas fundações. Por outro lado, a maioria dos solos colapsíveis em regiões tropicais está sujeita a intenso intemperismo e laterização, os quais são responsáveis por melhorar as propriedades do solo após compactação. Por esta razão, solos lateríticos colapsíveis em forma compactada são comumente usados como aterros e materiais de construção em estradas, e têm sido empregados no Brasil para possibilitar a construção de fundações diretas. A pesquisa atual foi planejada para avaliar um aprimoramento desta técnica, que seria o uso de grupos de colunas de solos lateríticos compactados, ao invés de camadas compactadas de solo muito espessas, para permitir o uso de fundações diretas. Para este estudo, ensaios edométricos simples e duplos e de modelagem física em centrífuga foram conduzidos em um solo laterítico colapsível típico do sudeste brasileiro. Complementarmente, um modelo numérico foi ajustado, usando-se os resultados dos ensaios em centrífuga, para estimar a melhoria nas propriedades do solo reforçado. Por fim, os resultados experimentais mostraram que a técnica proposta pode reduzir os recalques de colapso induzidos por umedecimento do solo, e também melhorar o comportamento carga-recalque de fundações diretas apoiadas no solo investigado. / Normally, shallow foundations are not used in collapsible lateritic soils due to the lack of economic and efficient solutions to improve this critical ground condition. When these soils become wetted, the water breaks down soil arrangement and causes the soil to compress, and consequent large settlement of the foundations supported by them. In contrast, most collapsible soils in tropical regions are subject to intense weathering and laterization, which are responsible for good soil properties after compaction. For this reason, collapsible lateritic soils in compacted form are commonly used as fills and road construction materials, and have been utilised in Brazil to allow the construction of shallow foundations. The current research was designed in order to evaluate an enhancement of this technique, which is the use of groups of compacted lateritic soil columns, instead of very thick compacted soil layers, to allow the use of shallow foundations. For this study, single-point and double oedometer and physical model tests in centrifuge were conducted on a collapsible lateritic soil typical in the southeastern part of Brazil. Additionally, a numerical model was adjusted using the data from the centrifuge tests to estimate the improvement of the reinforced soil. The experimental results show that the proposed technique can reduce wetting-induced collapse settlements and also improve the loaddisplacement performance of shallow foundations in the soil investigated.
13

Ohde-Kolloquium 2018: Aktuelle Themen der Geotechnik

Herle, Ivo January 2018 (has links)
Das Ohde-Kolloquium 2018 mit der traditionellen Überschrift — Aktuelle Themen in der Geotechnik – wird wieder in Zusammenarbeit mit der Bundesanstalt für Wasserbau an der Technischen Universität Dresden veranstaltet. Damit werden die beiden Wirkungsstätten von Professor Johann Ohde gewürdigt, mit denen er seine Lehr- und Forschungstätigkeit verknüpft hat. Die Beiträge des diesjährigen Kolloquiums können grob in drei Themengruppen unterteilt werden: • Bodenverhalten • Feld- und Modellversuche • Numerik und Anwendungen Die meisten Themen sind eng mit der Komplexität des Bodenverhaltens verbunden. In Abhängigkeit ihres Zustandes und einer aufgebrachten Belastung können Böden verschiedene Zustandsformen – gasförmig, flüssig und fest. Insbesondere der Übergang vom Feststoff zur Flüssigkeit (Bodenverflüssigung, hydraulischer Grundbruch, usw.) ist mit einem hohen Schadenspotenzial für Bauwerke und Menschen verbunden. Modellversuche im Labor und Monitoring im Feld sind für das Verständnis und die rechtzeitige Erkennung der Gefahrenzustände unumgänglich. Inwieweit die jetzigen Prognosen ausgereift sind, zeigen die numerischen Berechnungen für ausgewählte Anwendungen.:Bewertung von Scherversuchen aus Vergleichsuntersuchungen an feinkornigem Boden -- Erik Schwiteilo, Ivo Herle Experimentelle Untersuchungen zur Rissinitiation hydraulisch belasteter feinkörniger Böden -- Helen Günther Verdichtung und Zustandsbeschreibung gemischtkörniger Böden -- Carsten Lauer, Jens Engel Zur Strukturentwicklung granularer Materialien in Scherversuchen -- Max Wiebicke, Edward Andò, Gioacchino Viggiani, Ivo Herle Ein erweitertes Bounding Surface Modell für die Anwendung auf allgemeine Spannungspfade im Sand -- Katharina Bergholz Anwendung der Dimensionsanalyse zur Untersuchung des Erosionsdurchbruches in feinkornigen Boden -- Johannes Welsch, Ivo Herle Laborversuche und Berechnungen zur Ermittlung der wirksamen Wandschubspannungen im Hole-Erosion-Test zur Bestimmung der Erosionsparameter bindiger Böden -- Manuel Hark Beurteilung der Verflüssigungsneigung grobkörniger Böden -- Bozana Bacic Untersuchungen zur Gebrauchstauglichkeit der Gründungen von Offshore-Windenergieanlagen -- Torsten Wichtmann 1g Modellversuche mit granularen Säulen in organischen Böden -- Marcel Ney, Frank Rackwitz Bodenverdichtung - Experimentelle und numerische Untersuchungen -- Holger Pankrath Herausforderungen für die Spezialtiefbau-Forschung -- Wolfgang Wehr Zur Prognose von Ersatzfedersteifigkeiten von Tiefgründungssystemen am Beispiel der Itztalbrücke -- Thomas Meier Dynamische numerische Berechnungen zur Bewertung der Standsicherheit von Erddämmen unter Erdbebeneinwirkung -- Jamal Hleibieh, Ivo Herle CFD Simulation von Fluidstromung in Gesteinskluften mit OpenFOAM -- Maxim Finenko, Heinz Konietzky
14

Ground Improvement using 3D-Cellular Confinement Systems : Experimental and Numerical Studies

Hegde, Amarnath January 2014 (has links) (PDF)
The various aspects of the 3D cellular confinement systems (geocells) subjected to static loading are comprehensively studied with the help of experimental and numerical studies. The performances of the geocells were separately studied in both sand and clay beds. Laboratory tests were performed on single as well as multiple cells. The behavior of 3D-cells made of different materials such as Novel polymeric alloy, geogrids and bamboo were compared. Moreover, the performances of the geocells were compared with other forms of geosynthetic reinforcements namely, geogrids and the combination of geocells and geogrids. In addition to comprehensive experimental study, 2-dimensional and 3-dimensional numerical modelling efforts are also presented. A Realistic approach of modelling the geocells in 3D framework has been proposed; which considers the actual curvature of the geocell pockets. An Analytical equation has been proposed to estimate the increase in the bearing capacity of the geocell reinforced soft clay beds. Similarly, a set of equations to estimate the stress and strains on the surface of the geocells subjected to compressive loading were also proposed. A case study highlighting the innovative use of the geocell foundation to support the embankment on soft settled red mud has been documented in the thesis. A new and emerging application of geocell to protect underground utilities and the buried pipelines has been proposed. At the end, behavior of the geocell under cyclic loading has also been discussed. Firstly, laboratory model tests were performed to understand the behavior of the geocells in sand and clay beds. Test results of unreinforced, geogrid reinforced, geocell reinforced, and geocell reinforced with additional planar geogrid at the base of the geocell cases were compared separately for sand and clay beds. Results revealed that the use of geocells increases the ultimate bearing capacity of the sand bed by 2.9 times and clay bed by 3.6 times. Provision of the basal geogrid increases the ultimate load carrying capacity of the sand and clay bed by about 3.6 times and 4.9 times, respectively. Besides increasing the load carrying capacity, provision of the planar geogrid at the base of the cellular mattress arrests the surface heaving and prevents the rotational failure of the footing. Geocells contribute to the load carrying capacity of the foundation bed, even at very low settlements. In addition, the effect of infill materials on the performance of the geocell was also studied. Three different infill materials, namely aggregate, sand and local red soil were used in the study. Results suggest that the performance of the geocell was not heavily influenced by the infill materials. Out of which aggregate found to be slightly better than other two infill materials. Further, 2-dimensional numerical studies using FLAC2D (Fast Lagrangian Analysis of Continua in 2D) were carried out to validate the experimental findings. The equivalent composite approach was used to model the geocells in 2-dimensional framework. The results obtained from the FLAC2D were in good agreement with the experimental results. However, in the sand bed, FLAC2D overestimated the bearing pressure by 15% to 20% at higher settlements. In addition, the joint strength and the wall deformation characteristics of the geocells were studied at the single cell level. The study helps to understand the causes for the failure of the single cell in a cellular confinement system. Experimental studies were conducted on single cells with cell pockets filled up with three different infill materials, namely, silty clay, sand and the aggregates. The results of the experimental study revealed that the deformation of the geocell wall decreases with the increase in the friction angle of the infill material. Measured strain values were found to be in the range of 0.64% to 1.34% for different infill materials corresponding to the maximum applied bearing pressure of 290 kPa. Experimental results were also validated using FLAC3D. Findings from the numerical studies were in accordance with the experimental results. A simple analytical model based on the theory of thin cylinders was also proposed to calculate the accumulated strain of the geocell wall. This model operates under a simple elastic solution framework. The proposed model slightly overestimates the strains as compared to experimental and numerical values. A realistic approach of modelling the geocells in 3-dimensional (3D) framework has been proposed. Numerical simulations have been carried out by forming the actual 3D honeycomb shape of the geocells using the finite difference package FLAC3D. Geocells were modeled using the geogrid structural element available in the FLAC 3D with the inclusion of the interface element. Geocells, foundation soil and the infill soil were modeled with the different material model to match the real case scenario. The Mohr Colombo model was used to simulate the behavior of the sand bed while modified Cam clay was used to simulate the behavior of the clay bed. It was found that the geocells distribute the load in lateral direction to a relatively shallow depth as compared to unreinforced case. More than 50% reduction in the stress in the presence of geocells and more than 70% reduction in the stress in the presence geocells with basal geogrid were observed in sand and clay beds. The numerical model was also validated with the experimental studies and the results were found to be in good agreement with each other. The validated numerical model was used to study the influence of various properties of the geocells on the performance of the reinforced foundation beds. The performance of the foundation bed was directly influenced by the modulus and the height of the geocells. Similarly, the pocket size of the geocell inversely affected the performance of the reinforced beds. The geocell with textured surface yielded better performance than the geocell with smooth surface. A case history of the construction of a 3 m high embankment on the geocell foundation over the soft settled red mud has been documented. Red mud is a waste product from the Bayer process of Aluminium industry. The reported embankment is located in Lanjigharh (Orissa) in India. The geotechnical problems of the site, the design of the geocell foundation based on experimental investigation and the construction sequences of the geocell foundations in the field are discussed. Based on the experimental studies, an analytical model was also developed to estimate the load carrying capacity of the soft clay bed reinforced with geocell and the combination of geocell and geogrid. The solution was established by superimposing the three mechanisms viz. lateral resistance effect, vertical stress dispersion effect and the membrane effect. By knowing the pressure applied on the geocell, tensile strength of the geogrid and the limiting settlement, the increment in the load carrying capacity can be calculated. The analytical model was validated with the experimental results and the results were found to be in good agreement with each other. The results of the experimental and analytical studies revealed that the use of the combination of geocell and the geogrid is always beneficial than using the geocell alone. Hence, the combination of geocell and geogrid was recommended to stabilize the embankment base in Lanjigharh. Over 15,000 mof embankment base was stabilized using geocell foundation. The foundation work was completed within 15 days using locally available labors and the equipment. Construction of the embankment on the geocell foundation has already been completed. The constructed embankment has already sustained two monsoon rains without any cracks and seepage. Like Aluminum tailings (redmud), geocell foundations can also be used in various other mine tailings like zinc, copper etc. Geocell foundation can offer potential solutions to storage problems faced by various mining industries. The thesis also proposes a potential alternative to the geocells in the form of bamboocells in order to suit the Indian scenario. Indian has the 2nd largest source of bamboo in the world. The areas particularly rich in bamboo are the North Eastern States, the Western Ghats, Chattisgarh and Andaman Nicobar Islands. The tensile strength and surface roughness of the bamboo was found to be 9 times and 3 times higher than geocell materials. In order to use the bamboo effectively, 3D cells (similar to geocells) and 2D grids (similar to geogrids) are formed using bamboo known as bamboocells and bamboogrids respectively. The idea behind forming bamboocells is to extract the additional confining effect on the encapsulated soil by virtue of its 3-dimensional shape. The laboratory investigations were performed on a clay bed reinforced with natural (bamboo) and commercial (geosynthetics) reinforcement materials. The performance of bamboocells and bamboogrids reinforced clay beds were compared with the clay bed reinforced with geocells and geogrids. The ultimate bearing capacity of the bamboocell and bamboogrid reinforced clay bed was found to be 1.3 times that of reinforced with geocell and geogrid. The settlement of the clay bed was reduced by 97% due to the insertion of the combination of the bamboocell and bamboogrid as compared to the unreinforced clay bed. The bamboo was treated chemically to increase the durability. The performance of the bamboo was reduced by 15-20% after the chemical treatment; still the performance was better than its geosynthetic counterparts. Analytical studies revealed that the 3% of the ultimate tensile strength of the bamboogrid was mobilized while resisting the footing load. The study also explored the new and innovative applications of the geocells to protect underground utilities and buried pipelines. The laboratory model tests and the numerical studies were performed on small diameter PVC pipes, buried in geocell reinforced sand beds. In addition to geocells, the efficacy of only geogrid and geocell with additional basal geogrid cases were also studied. A PVC (Poly Vinyl Chloride) pipe with external diameter 75 mm and thickness 1.4 mm was used in the experiments. The vehicle tire contact pressure was simulated by applying the pressure on the top of the bed with the help of a steel plate. Results suggest that the use of geocells with additional basal geogrid considerably reduces the deformation of the pipe as compared to other types of reinforcements. Further, the depth of placement of pipe was also varied between 1B to 2B (B is the width of loading plate) below the plate in the presence of geocell with additional basal geogrid. More than 50% reduction in the pressure and more than 40% reduction in the strain values were observed in the presence of reinforcements at different depths as compared to the unreinforced beds. Further, experimental results were validated with 3-dimensional numerical studies using 3D FLAC. Good agreement in the measured pipe stain values were observed between the experimental and numerical studies. In addition, the results of the 1-g model tests were scaled up to the prototype case of the shallow buried pipeline below the pavement using the appropriate scaling laws. The efficacy of the geocells was also studied under the action of cyclic loading. The laboratory cyclic plate load tests were performed in soft clay bed by considering the three different cases, namely, unreinforced, geocell reinforced and geocell with additional basal geogrid reinforced. The coefficient of elastic uniform compression (Cu) was evaluated from the cyclic plate load tests for the different cases. The Cu value was found to increase in the presence of geocell reinforcement. The maximum increase in the Cu value was obtained for the case of the clay bed reinforced with the combination of geocell and the geogrid. The results of the laboratory model tests were extrapolated to prototype foundation supporting the low frequency reciprocating machine. The results revealed that, in the presence of the combination of geocell and the geogrid the natural frequency of the foundation-soil system increases by 4 times and the amplitude of the vibration reduces by 92%.
15

Centrum výzkumných institutů a doktorských studií v Brně - příprava a organizace výstavby / The Centre Research Institutes and Doctoral Studies in Brno – Project Planning and Management

Hejna, Vladimír January 2014 (has links)
The technological project deals with processing of materials and documentation for the preparation and realization of the new building Center research institutes and doctoral studies in Brno Poříčí. The project includes technical report which closely provides basic information about the building and used technologies. Due to complicated underlying conditions the project is focused on usage of bracing of foundation pits. The project contains also control and test plans including graphical attachments.
16

Administrativní budova Lomnického - stavebně technologická příprava stavby / Administrative building Lomnického - Building technology preparation of construction

Hanzlík, Vlastimil January 2019 (has links)
This diploma thesis focuses on the construction and technological preparation of the office building in the Lomnického street. The aim of this work is to choose the appropriate construction process. The thesis contains a technical report of a construction and technological project, solutions of wider transport relations, time and financial object plan, itemized budget, design of a site equipment, design of the main building machines and mechanisms, time schedule, technological regulation, inspection and test plan, calculation of two options of the excavation of building pit and details to waterproofing of the substructure. In detail, the thesis is dedicated to secure the building pit enclosed by diaphragm walls.
17

Příprava realizace rozhledny Kelčský Javorník, Rajnochovice / Preparation of the implementation of Kelčský Javorník Lookout Tower, Rajnochovice

Vokurek, Kamil Unknown Date (has links)
This diploma thesis is based on preparation of the implementation of Kelčský Javorník Lookout Tower in Rajnochovice. The main idea of the lookout tower constructing is to increase the local tourism. Diploma thesis assesses the whole project and it is focused on the foundation of the rough lower construction and also on assembly of the higher construction. Planning was assessed in terms of time, finance and in terms of the use of material resources. The quality of construction will be ensured by created inspection and test plans. To increase the overall service life of the structures, a scheduled maintenance schedule was designed. A variant solution of electricity supply was proposed, which will shorten the construction time, reduce the total construction costs and the overall maintenance of the building during its lifetime.

Page generated in 0.1469 seconds