• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 12
  • 11
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 41
  • 34
  • 29
  • 29
  • 27
  • 24
  • 23
  • 23
  • 22
  • 20
  • 20
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Influência da fase de crescimento celular na ação fotodinâmica: avaliação morfológica, mecânica e bioquímica, em células de Candida albicans / Influence of the cell growth phase on photodynamic action: morphological, mechanical and biochemical evaluation in cells of Candida albicans

BAPTISTA, ALESSANDRA 09 October 2017 (has links)
Submitted by Pedro Silva Filho (pfsilva@ipen.br) on 2017-10-09T19:13:18Z No. of bitstreams: 0 / Made available in DSpace on 2017-10-09T19:13:18Z (GMT). No. of bitstreams: 0 / Estudos têm demonstrado o potencial da terapia fotodinâmica antimicrobiana (aPDT) na inativação de diferentes células microbianas. No geral, são três as fases de crescimento dos microrganismos: fase lag, exponencial e estacionária. Os objetivos deste estudo foram avaliar a susceptibilidade de células de Candida albicans em diferentes fases de crescimento, submetidas à aPDT, associando azul de metileno (50 μM) e luz de emissão vermelha (λ= 660 nm) e investigar alterações morfológicas, mecânicas e bioquímicas, antes e depois da aPDT, por microscopia eletrônica de varredura, de força atômica e por espectroscopia no infravermelho por transformada de Fourier. Os resultados obtidos sugerem que, em parâmetros letais, células em fase estacionária de crescimento (48 h) são menos susceptíveis à aPDT, quando comparadas àquelas em fases lag (6 h) e ex-ponencial (24 h) de crescimento. Entretanto, em parâmetros subletais, células de 6 h e 48 h mostraram a mesma susceptibilidade à aPDT. Em sequência, os experimentos foram realizados em parâmetros considerados subletais para células crescidas por 6 e 48 h. A avaliação morfológica mostrou menor quantidade de matriz extracelular em células de 6 h comparada àquelas de 48 h. A espectroscopia de força atômica mostrou que células em fase lag perderam a rigidez após a aPDT, enquanto que células em fase estacionária mostraram comportamento in-verso. Ainda, células de 48 h diminuíram sua adesividade após a aPDT, enquanto que células de 6 h e 24 h tornaram-se mais adesivas. Os resultados bioquímicos revelaram que as diferenças mais significativas entre as células fúngicas de 6 h e 48 h ocorreram na região de DNA e carboidratos. A aPDT promoveu mais alterações bioquímicas na região de DNA e carboidratos em células de 6 h e em lipídios e ácidos graxos em células de 48 h. Nossos resultados indicam que a fase de crescimento celular desempenha papel importante no sítio de ação da aPDT em células de C. albicans. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
112

Charakterizace glykoforem haptoglobinu v lidském séru / Characterization of hapt oglobin glycoforms in human serum

Darebná, Petra January 2015 (has links)
Characterization of haptoglobin glycoforms in human serum Petra Darebná (Katedra biochemie, Přírodovědecká fakulta, Univerzita Karlova v Praze, Česká republika) Changes in glycosylation of proteins are associated with several types of cancer, including hepatocelular carcinoma and colorectal carcinoma. This project deals with data independent analysis using ion cyclotron resonance with Fourier transform and tandem mass spectrometry with liquid chromatogramy and multiple reaction monitoring to quantify these changes in hepatocelular cancinoma and colorectal carcinoma with liver metastases. In the first part of the project the haptoglobin was enriched from pooled serum samples of pacients with hepatocellular carcinoma, colorectal cancer and colorectal carcinoma with metastases using hemoglobin immobilized on CNBr-activated Sepharose 4B and then purified by high pressure liquid chromatography. Individual haptoglobin glycopeptides were analyzed using ion cyclotron resonance with Fourier transform. In the second part of the project we analyzed changes in glycosylation depending on diferent tumor diseases in partially depleted serum of individual patients using ethanol precipitation. Individual fucosylated glycoforms of N-glycopeptides of serum proteins were compared with their nonfucosylated forms. In...
113

ASIC Implementation of A High Throughput, Low Latency, Memory Optimized FFT Processor

Kala, S 12 1900 (has links) (PDF)
The rapid advancements in semiconductor technology have led to constant shrinking of transistor sizes as per Moore's Law. Wireless communications is one field which has seen explosive growth, thanks to the cramming of more transistors into a single chip. Design of these systems involve trade-offs between performance, area and power. Fast Fourier Transform is an important component in most of the wireless communication systems. FFTs are widely used in applications like OFDM transceivers, Spectrum sensing in Cognitive Radio, Image Processing, Radar Signal Processing etc. FFT is the most compute intensive and time consuming operation in most of the above applications. It is always a challenge to develop an architecture which gives high throughput while reducing the latency without much area overhead. Next generation wireless systems demand high transmission efficiency and hence FFT processor should be capable of doing computations much faster. Architectures based on smaller radices for computing longer FFTs are inefficient. In this thesis, a fully parallel unrolled FFT architecture based on novel radix-4 engine is proposed which is catered for wide range of applications. The radix-4 butterfly unit takes all four inputs in parallel and can selectively produce one out of the four outputs. The proposed architecture uses Radix-4^3 and Radix-4^4 algorithms for computation of various FFTs. The Radix-4^4 block can take all 256 inputs in parallel and can use the select control signals to generate one out of the 256 outputs. In existing Cooley-Tukey architectures, the output from each stage has to be reordered before the next stage can start computation. This needs intermediate storage after each stage. In our architecture, each stage can directly generate the reordered outputs and hence reduce these buffers. A solution for output reordering problem in Radix-4^3 and Radix-4^4 FFT architectures are also discussed in this work. Although the hardware complexity in terms of adders and multipliers are increased in our architecture, a significant reduction in intermediate memory requirement is achieved. FFTs of varying sizes starting from 64 point to 64K point have been implemented in ASIC using UMC 130nm CMOS technology. The data representation used in this work is fixed point format and selected word length is 16 bits to get maximum Signal to Quantization Noise Ratio (SQNR). The architecture has been found to be more suitable for computing FFT of large sizes. For 4096 point and 64K point FFTs, this design gives comparable throughput with considerable reduction in area and latency when compared to the state-of-art implementations. The 64K point FFT architecture resulted in a throughput of 1332 mega samples per second with an area of 171.78 mm^2 and total power of 10.7W at 333 MHz.
114

Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure / Regularity of the solutions of elliptic or parabolic problems with data measure

Ariche, Sadjiya 25 June 2015 (has links)
Dans cette thèse on étudie la régularité de problèmes elliptiques (Laplace, Helmholtz) ou paraboliques (équation de la chaleur) avec donnée mesure dans divers cadres géométriques. Ainsi, on considère pour les seconds membres des masses de Dirac en un point, sur une ligne infinie, semi-infinie ou finie, et également sur une courbe régulière. Les solutions de ces problèmes étant singulières sur la fracture (modélisée par la masse de Dirac dans le second membre), on étudie la régularité dans des espaces de Sobolev avec poids. Dans le cas d'une fracture droite, on utilise une technique classique qui consiste à appliquer une transformée de Fourier ou de Mellin à l'équation de Laplace. Ceci nous amène à étudier l'équation de Helmholtz en 2D. Pour ce dernier, on montre des estimations uniformes qui permettent ensuite de prendre la transformée inverse et d'obtenir le résultat de régularité attendu. De même, la transformée de Laplace transforme l'équation de la chaleur dans la même équation de Helmholtz en 2D. Dans le cas d'une fracture courbe régulière, grâce aux résultats de [D'angelo:2012], en utilisant un argument de localisation et un recouvrement dyadique, on obtient une régularité améliorée de la solution toujours dans les espaces de Sobolev avec poids. / In this thesis, we study the regularity of elliptic problems (Laplace, Helmholtz) or parabolic problems (heat equation) with measure data in different geometric frames. Thus, we consider for the second members, Dirac masses at a point, on a line, on a half-line, or on a bounded segment, and also on a regular curve.  As the solutions of these problems are singular on the fracture (modeled by Dirac mass in the second member), we study their regularity in weighted Sobolev spaces.   In the case of a straight fracture, using Fourier or Mellin technique reduces the problem in dimension three to a Helmholtz problem in dimension two. For the latter, we prove uniform estimates, which are then used to apply the inverse transform and to obtain the expected regularity result. Similarly, the Laplace transformation transforms the heat equation into the same Helmholtz equation in 2D.  In the case of a smooth curve fracture, thanks to the results of [D'angelo:2012], using a localization argument and a dyadic recovery we get an improved smoothness of the solution always in weighted Sobolev spaces.
115

Využití akustické emise při sledování hydraulických strojů / Monitoring of hydraulic machines using acoustic emissions

Závorka, Dalibor January 2017 (has links)
The goal of this diploma thesis is to clarify possibilities of usage of acoustic emission as a hydraulic machinery diagnostics tool. Especially for exposing presence of ruptures or cracks in the parts of machine, assuming changes in acoustic exposure of the part during operation. This clarification is based on series of simple measured experiments, which consist of monitoring the bolt placed in fluid stream inside of a pipe. This bolt was preloaded against inner wall of pipe by appropriate tightening torque. This preload is supposed to simulate effects of the size of rupture. High preload simulates small rupture or none in object and respectively small preload is supposed to simulate big rupture. A group of pressure sensors and accelerometers measures experiments and their evaluations are processed by script created in software MATLAB. Outputs of this script are charts with effective values of respective sensors from the entire record split into individual frequency spectrums. These charts compare spectrums of each configuration to judge effects of parameters changes.
116

Vyhodnocení variability rychlosti pulzové vlny / Analysis of pulse wave velocity variability

Benešová, Lenka January 2019 (has links)
This diploma thesis deals with the variability of pulse wave velocity. It studies the variability of cardiovascular signals. It presents the research of measurement of pulse wave velocity and its analysis in physiology and pathological physiology. Applies spectral analysis in Matlab to a data set. It evaluates and reviews the results of this analysis
117

Diagnostika vibrací elektromagnetického původu v asynchronním motoru / Diagnosis of electromagnetic origin vibrations in asynchronous motor

Koníček, Pavel January 2014 (has links)
The aim of this master´s thesis is to introduce methods of diagnostics of vibrations in electrical machines. Describe the various vibration sources located inside and outside of the electric machine. Description of the sources of vibration is then preferably dedicated to vibration of electromagnetic origin. There is a description of the construction of an asynchronous motor and the magnetic circuit, the theory of vibrations and their origin. Described are also vibration sensor enables measurement and mathematical tools for their evaluation. In this work also practical vibration measurements on an asynchronous motor, data processing, their subsequent analysis and computer simulation of electromagnetic vibration origin. The conclusion of this work is devoted to the evaluation of the data obtained.
118

Detekcija nule A/D konvertorom niske rezolucije / Null detection using low resolution A/D converter

Vujičić Bojan 26 June 2017 (has links)
<p>U tezi je rešavan centralni problem &ndash; detekcija nule dvobitnom<br />stohastičkom digitalnom mernom metodom (SDMM). Formulisane su<br />dve metode detekcije nule primenom dvobitne SDMM. Po prvoj metodi<br />dinamička rezerva je oko 100 dB a po drugoj ne manje od 160 dB. Obe<br />metode su proverene teorijski, simulaciono i eksperimentalno. Pored<br />rešenja centralnog problema, dato je i nekoliko rešenja problema<br />koji su sa njim vezani. Hipoteza ove teze &ndash; &bdquo;dvobitna SDMM je u opsegu<br />0 % - 10% FS bolja od standardne sempling metode (SSM)&ldquo; &ndash; je potpuno<br />potvrđena u svim razmatranim slučajevima.</p> / <p>The main goal of this thesis was null-detection using a two-bit stochastic<br />digital measurement method (SDMM). Two methods of null-detection, using<br />two-bit SDMM, were formulated. Using the first method around 100 dB of<br />dynamic reserve was achieved and using the second one no less than<br />160 dB. Both methods were theoretically, using simulation and experimentally<br />confirmed. In addition to the solution of the main problem, several other<br />related problems were also solved. The hypothesis of this thesis &ndash; &ldquo;two-bit<br />SDMM in range from 0 % - 10 % FS is better than the standard sampling<br />method (SSM)&rdquo; has been fully confirmed in all considered cases.</p>
119

High Dimensional Fast Fourier Transform Based on Rank-1 Lattice Sampling / Hochdimensionale schnelle Fourier-Transformation basierend auf Rang-1 Gittern als Ortsdiskretisierungen

Kämmerer, Lutz 24 February 2015 (has links) (PDF)
We consider multivariate trigonometric polynomials with frequencies supported on a fixed but arbitrary frequency index set I, which is a finite set of integer vectors of length d. Naturally, one is interested in spatial discretizations in the d-dimensional torus such that - the sampling values of the trigonometric polynomial at the nodes of this spatial discretization uniquely determines the trigonometric polynomial, - the corresponding discrete Fourier transform is fast realizable, and - the corresponding fast Fourier transform is stable. An algorithm that computes the discrete Fourier transform and that needs a computational complexity that is bounded from above by terms that are linear in the maximum of the number of input and output data up to some logarithmic factors is called fast Fourier transform. We call the fast Fourier transform stable if the Fourier matrix of the discrete Fourier transform has a condition number near one and the fast algorithm does not corrupt this theoretical stability. We suggest to use rank-1 lattices and a generalization as spatial discretizations in order to sample multivariate trigonometric polynomials and we develop construction methods in order to determine reconstructing sampling sets, i.e., sets of sampling nodes that allow for the unique, fast, and stable reconstruction of trigonometric polynomials. The methods for determining reconstructing rank-1 lattices are component{by{component constructions, similar to the seminal methods that are developed in the field of numerical integration. During this thesis we identify a component{by{component construction of reconstructing rank-1 lattices that allows for an estimate of the number of sampling nodes M |I|\le M\le \max\left(\frac{2}{3}|I|^2,\max\{3\|\mathbf{k}\|_\infty\colon\mathbf{k}\in I\}\right) that is sufficient in order to uniquely reconstruct each multivariate trigonometric polynomial with frequencies supported on the frequency index set I. We observe that the bounds on the number M only depends on the number of frequency indices contained in I and the expansion of I, but not on the spatial dimension d. Hence, rank-1 lattices are suitable spatial discretizations in arbitrarily high dimensional problems. Furthermore, we consider a generalization of the concept of rank-1 lattices, which we call generated sets. We use a quite different approach in order to determine suitable reconstructing generated sets. The corresponding construction method is based on a continuous optimization method. Besides the theoretical considerations, we focus on the practicability of the presented algorithms and illustrate the theoretical findings by means of several examples. In addition, we investigate the approximation properties of the considered sampling schemes. We apply the results to the most important structures of frequency indices in higher dimensions, so-called hyperbolic crosses and demonstrate the approximation properties by the means of several examples that include the solution of Poisson's equation as one representative of partial differential equations.
120

Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice Sampling / Multivariate Approximation und hochdimensionale dünnbesetzte schnelle Fouriertransformation basierend auf Rang-1-Gittern als Ortsdiskretisierungen

Volkmer, Toni 18 July 2017 (has links) (PDF)
In this work, the fast evaluation and reconstruction of multivariate trigonometric polynomials with frequencies supported on arbitrary index sets of finite cardinality is considered, where rank-1 lattices are used as spatial discretizations. The approximation of multivariate smooth periodic functions by trigonometric polynomials is studied, based on a one-dimensional FFT applied to function samples. The smoothness of the functions is characterized via the decay of their Fourier coefficients, and various estimates for sampling errors are shown, complemented by numerical tests for up to 25 dimensions. In addition, the special case of perturbed rank-1 lattice nodes is considered, and a fast Taylor expansion based approximation method is developed. One main contribution is the transfer of the methods to the non-periodic case. Multivariate algebraic polynomials in Chebyshev form are used as ansatz functions and rank-1 Chebyshev lattices as spatial discretizations. This strategy allows for using fast algorithms based on a one-dimensional DCT. The smoothness of a function can be characterized via the decay of its Chebyshev coefficients. From this point of view, estimates for sampling errors are shown as well as numerical tests for up to 25 dimensions. A further main contribution is the development of a high-dimensional sparse FFT method based on rank-1 lattice sampling, which allows for determining unknown frequency locations belonging to the approximately largest Fourier or Chebyshev coefficients of a function. / In dieser Arbeit wird die schnelle Auswertung und Rekonstruktion multivariater trigonometrischer Polynome mit Frequenzen aus beliebigen Indexmengen endlicher Kardinalität betrachtet, wobei Rang-1-Gitter (rank-1 lattices) als Diskretisierung im Ortsbereich verwendet werden. Die Approximation multivariater glatter periodischer Funktionen durch trigonometrische Polynome wird untersucht, wobei Approximanten mittels einer eindimensionalen FFT (schnellen Fourier-Transformation) angewandt auf Funktionswerte ermittelt werden. Die Glattheit von Funktionen wird durch den Abfall ihrer Fourier-Koeffizienten charakterisiert und mehrere Abschätzungen für den Abtastfehler werden gezeigt, ergänzt durch numerische Tests für bis zu 25 Raumdimensionen. Zusätzlich wird der Spezialfall gestörter Rang-1-Gitter-Knoten betrachtet, und es wird eine schnelle Approximationsmethode basierend auf Taylorentwicklung vorgestellt. Ein wichtiger Beitrag dieser Arbeit ist die Übertragung der Methoden vom periodischen auf den nicht-periodischen Fall. Multivariate algebraische Polynome in Chebyshev-Form werden als Ansatzfunktionen verwendet und sogenannte Rang-1-Chebyshev-Gitter als Diskretisierungen im Ortsbereich. Diese Strategie ermöglicht die Verwendung schneller Algorithmen basierend auf einer eindimensionalen DCT (diskreten Kosinustransformation). Die Glattheit von Funktionen kann durch den Abfall ihrer Chebyshev-Koeffizienten charakterisiert werden. Unter diesem Gesichtspunkt werden Abschätzungen für Abtastfehler gezeigt sowie numerische Tests für bis zu 25 Raumdimensionen. Ein weiterer wichtiger Beitrag ist die Entwicklung einer Methode zur Berechnung einer hochdimensionalen dünnbesetzten FFT basierend auf Abtastwerten an Rang-1-Gittern, wobei diese Methode die Bestimmung unbekannter Frequenzen ermöglicht, welche zu den näherungsweise größten Fourier- oder Chebyshev-Koeffizienten einer Funktion gehören.

Page generated in 0.1141 seconds