• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 75
  • 20
  • 15
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 309
  • 309
  • 107
  • 72
  • 59
  • 50
  • 38
  • 37
  • 33
  • 33
  • 28
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

COVERS WP4 Benchmark 1 Fracture mechanical analysis of a thermal shock scenario for a VVER-440 RPV

Abendroth, Martin, Altstadt, Eberhard 31 March 2010 (has links) (PDF)
This paper describes the analytical work done by modelling and evaluating a thermal shock in a WWER-440 reactor pressure vessel due to an emergency case. An axial oriented semielliptical underclad/surface crack is assumed to be located in the core weld line. Threedimensional finite element models are used to compute the global transient temperature and stress-strain fields. By using a three-dimensional submodel, which includes the crack, the local crack stress-strain field is obtained. With a subsequent postprocessing using the j-integral technique the stress intensity factors KI along the crack front are obtained. The results for the underclad and surface crack are provided and compared, together with a critical discussion of the VERLIFE code.
82

Crack lengths calculation by unloading compliance technique for Charpy size specimens

Dzugan, Jan 31 March 2010 (has links) (PDF)
The problems with the crack length determination by the unloading compliance method are well known for Charpy size specimens. The final crack lengths calculated for bent specimens do not fulfil ASTM 1820 accuracy requirements. Therefore some investigations have been performed to resolve this problem. In those studies it was considered that measured compliance should be corrected for various factors, but satisfying results were not attained. In the presented work the problem was attacked from the other side, the measured specimen compliance was taken as a correct value and what had to be adjusted was the calculation procedure. On the basis of experimentally obtained compliances of bent specimens and optically measured crack lengths the investigation was carried out. Finally, a calculation procedure enabling accurate crack length calculation up to 5mm of plastic deflection was developed. Applying the new procedure, out of investigated 238 measured crack lengths, more than 80% of the values fulfilled the ASTM 1820 accuracy requirements, while presently used procedure provided only about 30% of valid results. The newly proposed procedure can be also prospectively used in modified form for the specimens of different than Charpy size.
83

Time-Dependent Crack Growth in Brittle Rocks and Field Applications to Geologic Hazards

Lee, Ji Soo January 2007 (has links)
The primary focus of this research is to evaluate the time-dependent crack growth in rocks using lab tests and numerical modeling and its application to geologic hazard problems. This research utilized Coconino sandstone and Columbia granite as the study materials and produced the subcritical crack growth parameters in both mode I and II loadings using the rock materials. The mode I loading test employs three different types of fracture mechanics tests: the Double Torsion (DT), the Wedge Splitting (WS), and the Double Cantilever Beam (DCB) test. Each test measured the mode I crack velocity. The DT test indirectly measured the crack velocity using the load relaxation method. The WS and DCB tests directly measured the crack velocity by monitoring using a video recording. The different mode I subcritical crack growth parameters obtained from the three tests are discussed. For the mode II loading test, this study developed a new shear fracture toughness test called the modified Punch-Through Shear (MPTS). The MPTS test conducted at different loading rates produced the mode II subcritical crack growth parameters. These fracture mechanics tests were calibrated and simulated using the distinct element method (DEM) and the finite element method (FEM). DEM analysis employed the particle flow code (PFC) to simulate the mixed mode crack growth and to match with the failure strength envelop of the triaxial compressive tests. FEM analysis employed the Phase2 program to analyze the crack tip stress distribution and the FRANC2D program to calculate the modes I and II stress intensity factors. The fracture mechanics tests and numerical modeling showed well the dependency of the mode II subcritical crack growth parameters according to confining pressure, loading rate, and the mode II fracture toughness. Finally, the UDEC modeling based on DEM is utilized in this study to forecast the long-term stability of the Coconino rock slope, as one of geologic hazards. The fracture mechanics approach is implemented in the program using the modes I and II subcritical crack growth parameters obtained from the lab tests and numerical modeling. Considering the progressive failure of rock bridges due to subcritical crack growth, the UDEC results predicted the stable condition of the Coconino rock cliff over 10,000 years. This result was validated by comparing it with the previous planar failure case.
84

The fracture mechanisms in duplex stainless steels at sub-zero temperatures

Pilhagen, Johan January 2013 (has links)
The aim of the thesis was to study the susceptibility for brittle failures and the fracture process of duplex stainless steels at sub-zero temperatures (°C). In the first part of the thesis plates of hot-rolled duplex stainless steel with various thicknesses were used to study the influence of delamination (also known as splits) on the fracture toughness. The methods used were impact and fracture toughness testing. Light optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture surfaces. It was concluded that the delaminations caused a loss of constraint along the crack front which resulted in a stable fracture process despite the presence of cleavage cracks. These delaminations occurred when cleavage cracks are constrained by the elongated austenite lamellae. The pop-in phenomenon which is frequently observed in duplex stainless steels during fracture toughness testing was shown to occur due to these delaminations. The susceptibility for pop-in behaviour during testing increased with decreasing plate thickness. The toughness anisotropy was also explained by the delamination phenomenon.In the second part of the thesis duplex stainless steel weld metals from lean duplex and super duplex were investigated. For the lean duplex weldments with different nickel contents, tensile, impact and fracture toughness testing were conducted from room temperature to sub-zero temperatures. The result showed that increased nickel content decreased the susceptibility for critical cleavage initiation at sub-zero temperatures. The super duplex stainless steel weldment was post weld heat treated. The fracture sequence at low temperature was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture. Energy-dispersive X-ray spectroscopy investigation of the weld metals showed that substitutional element partitioning is small in the weld metal. However, for the post weld heat treated weldments element partitioning occurred which resulted in decreased nickel content in the ferrite. / <p>QC 20131108</p>
85

Production And Characterization Of Resol Type Phenolic Resin / Layered Silicate Nanocomposites

Tasan, Cemal Cem 01 June 2005 (has links) (PDF)
ABSTRACT PRODUCTION AND CHARACTERIZATION OF RESOL TYPE PHENOLIC RESIN / LAYERED SILICATE NANOCOMPOSITES TaSan, Cemal Cem M.S., Department of Metallurgical and Materials Engineering Supervisor: Assoc.Prof. Cevdet Kaynak April 2005 133 Pages Polymer / layered silicate (P/LS) nanocomposites belong to one of the most promising group of materials of the past few decades and most probably for the near future. Combining two of the most widely studied topics of material science: composite materials and nanotechnology / P/LS research have drawn great attention starting with the pioneering works of Toyota Research Group in 1980&rsquo / s. The research is now being carried out world wide / since the excellent properties of these new materials, which is achieved by using very low amounts of a cheap reinforcement material (clay), increases the interest on these materials everyday after. In this present study, the object was to investigate the production parameters of phenol formaldehyde based layered silicate nanocomposites. For this purpose, 14 different specimen groups were produced / using two different resol type phenolic resins (PF76 and PF76TD) as the matrix / and 9 different montmorillonite clays (Rheospan, Resadiye, Cloisite Na+, 10A, 15A, 20A, 25A, 30B, 94A) as the reinforcement phase. Initially the curing schedules for the available resins were experimentally determined. Then, a short and effective mixing procedure for the thermosetting resin and the montmorillonite clay was developed. The effects of several processing parameters / such as clay type, clay source, clay content, clay modification, resin type, resin cure type, cure cycle and mixing cycle were determined by X-ray Diffraction, Scanning Electron Microscopy and Mechanical Tests. Then, Transmission Electron Microscopy was used to investigate the level of intercalation and/or exfoliation of the layered silicates. Finally, Differential Scanning Calorimetry was also carried out to analyse thermal properties of the specimens. It was concluded that, a partially intercalated and/or exfoliated structure could be obtained in resol type phenolic resin based systems at very low clay contents (such as 0,5%) leading to remarkable increases in mechanical properties (e.g. 66% increase in fracture toughness).
86

ショットピーニングしたセラミックスの表面下の残留応力分布

田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki, 森下, 裕介, MORISHITA, Yusuke 12 1900 (has links)
No description available.
87

Experimental methods for the study of mixed-mode fractures

Eplett, Matthew R. January 2017 (has links)
Any composite material is made up from two or more materials and therefore contains interfaces, which usually represent planes of weakness. Interfacial fractures are effectively constrained to propagate along these interfaces as mixed-mode fractures with all three opening, shearing and tearing actions (i.e. mode I, mode II and mode III), instead of kinking to maintain pure-mode-I conditions at the advancing crack front, as would typically happen in an isotropic material. This is significant because mixed-mode fracture toughness is load-dependent and not a purely intrinsic material property (although clearly the pure mode fracture toughnesses are indeed intrinsic material properties that can be determined experimentally). Therefore, in order to know the fracture toughness under general loading conditions, it is necessary to know both the interface failure criterion (that describes the fracture toughness as a function of the mode mixity), and the mode mixity of the crack under the specified loading conditions. This is a complex problem that has occupied researchers in the fracture mechanics community for decades. Consequently, the literature contains a large number of different mixed-mode partition theories. This work appears to show that, of all the partition theories assessed, Wang and Harvey s (2012a) Euler beam partition theory is able to most accurately predict the fracture toughness of a mixed-mode delamination in a fibre-reinforced polymer composite laminate. This statement is based on the outcomes of three separate studies: The first study uses data reported in the literature from a thorough programme of mixed-mode fracture testing of unidirectional and multi-directional laminates. The Euler beam partition theory is able to accurately predict the fracture toughness in all cases. Furthermore, the Euler beam partition theory, which is completely analytical, closely agrees over a large domain with Davidson et al. s (2000) independently-derived non-singular field partition theory, which was derived with the aid of experimental test results. In general, the singular-field approach based on 2D elasticity and the finite element method give poor predictions. In the second study, an original programme of mixed-mode fracture testing is carried out, which incorporates several novel aspects including new test apparatus and a methodology for testing with a wide range of applied pure bending moments. Eighty five fracture tests are performed on unidirectional glass/epoxy laminates to determine the initiation and propagation fracture toughnesses. Although the second study was inconclusive with respect to the correctness of any particular partition theory, the development of the test apparatus and test methodology are considered to be major contributions that will be useful for both design engineers and academic researchers, not only working with fibre-reinforced polymer composite laminates, but also working with other composite materials containing interfacial cracks. The third study uses digital image correlation to investigate the near-crack tip strain fields of mixed-mode delaminations to try to discover the underlying mechanics that govern the selection of a mixed-mode partition theory. The new testing apparatus is used again, and another novel testing methodology is developed. The work appears to confirm (with some caveats) that two sets of pure modes exist, that is, two pure mode I modes, and two pure mode II modes, with their numerical values roughly corresponding to those from Wang and Harvey s (2012a) Euler beam partition theory. It should be noted that, as far as the author s knowledge is concerned, Euler beam partition theory is the only one in the literature to predict the existence of two sets of pure modes. Although this work set out to conclusively determine which mixed-mode partition theory is able to most accurately predict the fracture toughness of a mixed-mode delamination in a fibre-reinforced polymer composite laminate, and also, to discover why, the outcomes cannot truly be called conclusions . Rather, they only offer strong support for Wang and Harvey s (2012a) Euler beam partition theory for predicting the fracture toughness fibre-reinforced polymer composite laminates against delamination. Despite this, the work makes major contributions that will be useful for both design engineers and academic researchers in the field, as described in the above.
88

Investigation of decommissioned reactor pressure vessels of the nuclear power plant Greifswald

Viehrig, Hans-Werner, Altstadt, Eberhard, Houska, Mario, Mueller, Gudrun, Ulbricht, Andreas, Konheiser, Joerg, Valo, Matti 05 June 2018 (has links) (PDF)
The investigation of reactor pressure vessel (RPV) material from the decommissioned Greifswald nuclear power plant representing the first generation of Russian-type WWER-440/V-230 reactors offers the opportunity to evaluate the real toughness response. The Greifswald RPVs of 4 units represent different material conditions as follows: • Irradiated (Unit 4), • irradiated and recovery annealed (Units 2 and 3), and • irradiated, recovery annealed and re-irradiated (Unit1). The recovery annealing of the RPV was performed at a temperature of 475° for about 152 hours and included a region covering ±0.70 m above and below the core beltline welding seam. Material samples of a diameter of 119 mm called trepans were extracted from the RPV walls. The research program is focused on the characterisation of the RPV steels (base and weld metal) across the thickness of the RPV wall. This report presents test results measured on the trepans from the beltline welding seam No. SN0.1.4. and forged base metal ring No. 0.3.1. of the Units 1 2 and 4 RPVs. The key part of the testing is focussed on the determination of the reference temperature T0 of the Master Curve (MC) approach following the ASTM standard E1921 to determine the facture toughness, and how it degrades under neutron irradiation and is recovered by thermal annealing. Other than that the mentioned test results include Charpy-V and tensile test results. Following results have been determined: • The mitigation of the neutron embrittlement of the weld and base metal by recovery annealing could be confirmed. • KJc values of the weld metals generally followed the course of the MC though with a large scatter. • There was a large variation in the T0 values evaluated across the thickness of the multilayered welding seams. • The T0 measured on T-S oriented SE(B) specimens from different thickness locations of the welding seams strongly depended on the intrinsic structure along the crack front. • The reference temperature RT0 determined according to the “Unified Procedure for Lifetime Assessment of Components and Piping in WWER NPPs - VERLIFE” and the fracture toughness lower bound curve based thereon are applicable on the investigated weld metals. • A strong scatter of the fracture toughness KJc values of the recovery annealed and re-irradiated and the irradiated base metal of Unit 1 and 4, respectively is observed with clearly more than 2% of the values below the MC for 2% fracture probability. The application of the multimodal MC-based approach was more suitable and described the temperature dependence of the KJc values in a satisfactory manner. • It was demonstrated that T0 evaluated according to the SINTAP MC extension represented the brittle fraction of the data sets and is therefore suitable for the nonhomogeneous base metal. • The efficiency of the large-scale thermal annealing of the Greifswald WWER 440/V230 Unit 1 and 2 RPVs could be confirmed.
89

Influência do tratamento térmico de revenimento na tenacidade à fratura dinâmica e na tenacidade à fratura assistida pelo ambiente de um aço inoxidável martensítico AISI 420

Macedo, Marcelo Moussalle January 2016 (has links)
Esse trabalho teve como objetivo analisar a influência da temperatura de revenimento na tenacidade à fratura dinâmica e na tenacidade à fratura assistida pelo ambiente de um aço inoxidável martensítico AISI 420. Para realização do tratamento térmico de revenimento as temperaturas de 380 e 540ºC foram selecionadas, sendo que esta última situa-se dentro da faixa de fragilização ao revenido desse material. Todos os ensaios reproduzidos neste trabalho foram realizados à temperatura ambiente utilizando corpos de prova da mecânica da fratura do tipo SE(B). As análises dos resultados obtidos mostraram uma grande susceptibilidade desse aço à fragilização ao revenido, inclusive com a mudança dos micromecanismos de fratura envolvidos no processo de falha, quando exposto ao ambiente de água do mar sintética sob proteção catódica de - 1100mVECS e a condições dinâmicas de carregamento, onde observou-se, respectivamente, uma redução na ordem de 60% e 30% do valor de tenacidade à fratura do material. / This study aimed to analyze the influence of tempering temperature on dynamic toughness and environment toughness of a stainless steel AISI 420. To carry out this study the tempering temperatures of 380 and 540ºC were selected, with the last one being within the range of the embrittlement of this material. All tests reproduced in this work were performed at room temperature on specimens of the mechanical fracture SE (B). The analysis of the obtained results showed a great susceptibility of this steel to the tempering embrittlement, with the change of fracture micromechanisms involved in the failure process, when exposed to the environment of synthetic sea water under cathodic protection of -1100mVECS and to dynamic conditions of loading, where a reduction in the order of 60% and 30% of the fracture toughness value of the material was observed, respectively.
90

Avaliação da tenacidade de juntas soldadas por fricção com pino consumível em aço para amarras

Buzzatti, Diogo Trento January 2017 (has links)
Nas últimas décadas a soldagem em estado sólido vem demonstrando ser uma ótima alternativa frente aos métodos convencionais de união mais utilizados na indústria, dos quais a grande maioria consiste na soldagem por fusão dos materiais. O presente trabalho consiste na utilização do processo denominado como soldagem por fricção com pino consumível (Friction Hydro Pillar Processing – FHPP). Este trabalho visou avaliar a aplicação do processo FHPP em um aço utilizado para a fabricação de componentes de amarras de uso offshore, para esses aços o surgimento de defeitos durante operação ou fabricação trazem elevados custos operacionais, o reparo por soldagem a arco é não recomendado por normas técnicas devido às propriedades destes materiais e as condições de operação dos componentes produzidos com os mesmos. Esta avaliação se deu através da análise dos melhores parâmetros de processo (força axial, velocidade de rotação, consumo do pino e geometria de pinos e furos usinados) visando juntas soldadas livres de defeitos, avaliadas através de análises macrográficas, análises micrográficas e perfis de microdureza que por sua vez foram realizados visando a melhor caracterização das regiões que compõem a junta soldada Por fim, para a avaliação da tenacidade das juntas soldadas, ensaios de impacto Charpy e tenacidade à fratura (CTOD), seguidos de análises fractográficas em lupa e MEV (microscópio eletrônico de varredura), foram realizados com base em recomendações normativas visando uma avaliação precisa da tenacidade da região de união dos materiais soldados. As juntas soldadas apresentaram valores de CTOD de aproximadamente 40% dos valores obtidos em corpos de prova extraídos do material base. O desempenho das juntas soldadas nos ensaios de tenacidade foi claramente prejudicado pela presença de inclusões, observadas ainda no material base, que acabaram por concentrar-se nas interfaces de união das soldas devido às características do processo FHPP. / In the last few years the solid state welding has been a great alternative compared to the most common processes used in industry, which usually consists in fusion of the employed materials. The present study wants to evaluate the application of Friction Hydro-Pillar Processing (FHPP). This work aims to analyze the application of FHPP in steel used to manufacturing offshore mooring components where the incidence of defects during the operation and manufacturing result in elevated operational costs. In addition the repair of these components is not recommended by technical stand arts duo to properties of materials and operational conditions of components. The analyses was carried out by the optimization of process parameters (axial force, rotational speed, rod burn off, geometry of rod and machined hole) aiming, in the first step, free defects and sufficient heat input welded joints through analyses of macrographs. A subsequently detailed analysis of micrographs and micro hardness profile was made aiming a better characterization of all welding regions. Finally, Charpy impact tests and Crack Tip Opening Displacement (CTOD) tests were carried out, to toughness evaluation of welding joints Followed by fractography in scanning electron microscopy (SEM) was made based in recommended technical standards aiming more accurate about the toughness in bonding line regions of welded joints. The welded joints presented a CTOD tests result that where about 40% of the values obtained for the base material. The specimen performance in toughness tests was clearly adversely affected by the presence of inclusions in the bonding lines. Observed in material base during the first analyses, these inclusions have been found in large quantity on bonding lines of welds because a characteristic of FHPP to concentrate it in this region.

Page generated in 0.0572 seconds