• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and assessment of non-destructive evaluation techniques for the measurment of stress and strain in biological materials

Coulter, Ryan David 07 June 2007 (has links)
The heterogeneous and anisotropic nature of wood material creates additional design challenges not present with the use of other structural materials such as steel and aluminum. The natural variation in the physical properties of wood members requires that the specified strengths and resistances used for design calculations be based on the quantities measured for the fifth percentile of all wood materials tested. The result is that design may be unnecessarily conservative and subsequently inefficient. The same properties that cause uncertainty surrounding the physical properties of biological materials also create difficulty in applying non-destructive evaluation techniques. Strain measurement is one particular technique that is extremely valuable for materials of known and consistent stress-strain relationships, but whose usefulness is diminished when applied to biological materials. To demonstrate the need for more accurate strain measurement in light-framed structures, the predictive calculations and structural modelling of a post-framed building was compared to its demonstrated performance. The analysis did not adequately reflect the actual performance of the building, and it was determined that additional monitoring of light-framed buildings through systems such as strain measurement was required to gain a better understanding of the performance characteristics in order to optimize evaluation techniques. This project aimed to develop a system that accurately measures strain in dimensional lumber of different types, which in turn will enable researchers to enhance monitoring the performance of light-frame structures and optimize design analysis and structural modelling techniques. The development of a methodology that provides a practical means by which to perform in-situ testing of post-frame buildings and decreases the complexity of post-frame building monitoring will contribute to the advancement of design and analysis techniques. In the calibration phase of the project, metal foil resistance strain gages were mounted onto wooden specimens with dimensions of 5 x 13 x 40 mm, 5 x 40 x 100 mm, and 2 x 20 x 50 mm, and acrylic specimens with dimensions of 3 x 25 x 75 mm. These specimens were then subjected to loading in an ATS universal testing machine in the Physical Properties Lab at the University of Manitoba. Stress-strain curves were developed based upon the observed stress and strain levels. These calibrated gages were then mounted on to a 38 x 89 mm specimen of S-P-F dimensional lumber which represented a typical light-framed building material. This assembly was then subjected to a similar loading procedure as the calibrated gage and stress-strain curves were generated once again. The slopes of the stress-strain curves developed from the two phases of the project were compared to determine if a consistent correlation existed. The three sizes of wood specimens did not demonstrate a consistent correlation. However, the acrylic specimen demonstrated consistent correlation amongst two groups of three with correlation coefficients within a forty percent range in one group and within a nine percent range in the other group. This suggests that further experimental refinements could produce the desired results. / October 2007
2

Development and assessment of non-destructive evaluation techniques for the measurment of stress and strain in biological materials

Coulter, Ryan David, strain 07 June 2007 (has links)
The heterogeneous and anisotropic nature of wood material creates additional design challenges not present with the use of other structural materials such as steel and aluminum. The natural variation in the physical properties of wood members requires that the specified strengths and resistances used for design calculations be based on the quantities measured for the fifth percentile of all wood materials tested. The result is that design may be unnecessarily conservative and subsequently inefficient. The same properties that cause uncertainty surrounding the physical properties of biological materials also create difficulty in applying non-destructive evaluation techniques. Strain measurement is one particular technique that is extremely valuable for materials of known and consistent stress-strain relationships, but whose usefulness is diminished when applied to biological materials. To demonstrate the need for more accurate strain measurement in light-framed structures, the predictive calculations and structural modelling of a post-framed building was compared to its demonstrated performance. The analysis did not adequately reflect the actual performance of the building, and it was determined that additional monitoring of light-framed buildings through systems such as strain measurement was required to gain a better understanding of the performance characteristics in order to optimize evaluation techniques. This project aimed to develop a system that accurately measures strain in dimensional lumber of different types, which in turn will enable researchers to enhance monitoring the performance of light-frame structures and optimize design analysis and structural modelling techniques. The development of a methodology that provides a practical means by which to perform in-situ testing of post-frame buildings and decreases the complexity of post-frame building monitoring will contribute to the advancement of design and analysis techniques. In the calibration phase of the project, metal foil resistance strain gages were mounted onto wooden specimens with dimensions of 5 x 13 x 40 mm, 5 x 40 x 100 mm, and 2 x 20 x 50 mm, and acrylic specimens with dimensions of 3 x 25 x 75 mm. These specimens were then subjected to loading in an ATS universal testing machine in the Physical Properties Lab at the University of Manitoba. Stress-strain curves were developed based upon the observed stress and strain levels. These calibrated gages were then mounted on to a 38 x 89 mm specimen of S-P-F dimensional lumber which represented a typical light-framed building material. This assembly was then subjected to a similar loading procedure as the calibrated gage and stress-strain curves were generated once again. The slopes of the stress-strain curves developed from the two phases of the project were compared to determine if a consistent correlation existed. The three sizes of wood specimens did not demonstrate a consistent correlation. However, the acrylic specimen demonstrated consistent correlation amongst two groups of three with correlation coefficients within a forty percent range in one group and within a nine percent range in the other group. This suggests that further experimental refinements could produce the desired results.
3

Development and assessment of non-destructive evaluation techniques for the measurment of stress and strain in biological materials

Coulter, Ryan David 07 June 2007 (has links)
The heterogeneous and anisotropic nature of wood material creates additional design challenges not present with the use of other structural materials such as steel and aluminum. The natural variation in the physical properties of wood members requires that the specified strengths and resistances used for design calculations be based on the quantities measured for the fifth percentile of all wood materials tested. The result is that design may be unnecessarily conservative and subsequently inefficient. The same properties that cause uncertainty surrounding the physical properties of biological materials also create difficulty in applying non-destructive evaluation techniques. Strain measurement is one particular technique that is extremely valuable for materials of known and consistent stress-strain relationships, but whose usefulness is diminished when applied to biological materials. To demonstrate the need for more accurate strain measurement in light-framed structures, the predictive calculations and structural modelling of a post-framed building was compared to its demonstrated performance. The analysis did not adequately reflect the actual performance of the building, and it was determined that additional monitoring of light-framed buildings through systems such as strain measurement was required to gain a better understanding of the performance characteristics in order to optimize evaluation techniques. This project aimed to develop a system that accurately measures strain in dimensional lumber of different types, which in turn will enable researchers to enhance monitoring the performance of light-frame structures and optimize design analysis and structural modelling techniques. The development of a methodology that provides a practical means by which to perform in-situ testing of post-frame buildings and decreases the complexity of post-frame building monitoring will contribute to the advancement of design and analysis techniques. In the calibration phase of the project, metal foil resistance strain gages were mounted onto wooden specimens with dimensions of 5 x 13 x 40 mm, 5 x 40 x 100 mm, and 2 x 20 x 50 mm, and acrylic specimens with dimensions of 3 x 25 x 75 mm. These specimens were then subjected to loading in an ATS universal testing machine in the Physical Properties Lab at the University of Manitoba. Stress-strain curves were developed based upon the observed stress and strain levels. These calibrated gages were then mounted on to a 38 x 89 mm specimen of S-P-F dimensional lumber which represented a typical light-framed building material. This assembly was then subjected to a similar loading procedure as the calibrated gage and stress-strain curves were generated once again. The slopes of the stress-strain curves developed from the two phases of the project were compared to determine if a consistent correlation existed. The three sizes of wood specimens did not demonstrate a consistent correlation. However, the acrylic specimen demonstrated consistent correlation amongst two groups of three with correlation coefficients within a forty percent range in one group and within a nine percent range in the other group. This suggests that further experimental refinements could produce the desired results.
4

Tenterden houses : a study of the domestic buildings of a Kent parish in their social and economic environment

Roberts, Judith January 1990 (has links)
No description available.
5

Design Considerations for Composite Beams Using Precast Concrete Slabs.

Hicks, S., Lawson, R.M., Lam, Dennis January 2006 (has links)
no / Precast concrete floors are widely used in building construction, but there is little detailed design guidance on their application in steel-framed buildings. Traditionally the steel beams have been designed to support the precast slabs on their top flange. However, there are an increasing number of composite frames and slim floor constructions where the precast slabs are designed to interact structurally with the steel frame. Composite action can be developed by welded shear connectors attached to the steel beams and by transverse reinforcement; however, this form of construction is currently outside the provisions of the current codes of practice. This paper discusses some of the particular issues that affect this form of construction, and presents design guidance using the Eurocode methodology.
6

Identification of civil engineering structures / Identification des structures de génie civil

Garcés, Francisco 22 February 2008 (has links)
Cette thèse présente trois méthodes pour l’identification des rigidités des structures d’usage commun dans l’ingénierie civile, à partir de données dynamiques expérimentales. La première méthode est développée pour des structures composées pour portiques. La deuxième méthode proposée est appliquée à des structures constituées pour des poutres isostatiques. La troisième est une méthodologie d’estimation des rigidités en flexion (EI) et au cisaillement (GA/?) pour une structure constituée de murs dont les énergies de déformation en flexion et cisaillement peuvent être soit du même ordre de grandeur, soit l’une prépondérante par rapport à l’autre. Pour chaque méthode, des simulations numériques sont effectuées pour identifier les dommages structuraux ou les variations des rigidités, en termes de localisation et de magnitude de ces dommages. L'incidence et l'impact des erreurs et bruits sur les valeurs estimées des rigidités structurales sont analysés. Les méthodologies sont également appliquées pour localiser des dommages mécaniques ou des réductions de section sur modèles de laboratoire. A partir des concepts dynamiques de base et considérant une typologie donnée de structure, la thèse développe les concepts et formulations permettant d’identifier les rigidités résiduelles des structures considérées. Les méthodes peuvent être aisément mises en oeuvre pour déterminer les éventuels dommages (localisation et intensité) qui peuvent affecter une structure, par exemple après un séisme. Peu de mesures sont requises à cet effet : des essais de vibration libre et du matériel peu onéreux de mesures sont amplement suffisants dans le cas particulier des structures étudiées / This thesis presents three methods to estimate and locate damage in framed buildings, simply-supported beams and cantilever structures, based on experimental measurements of their fundamental vibration modes. Numerical simulations and experimental essays were performed to study the effectiveness of each method. A numerical simulation of a multi-storey framed building, a real bridge and a real chimney were carried out to study the effectiveness of the methodologies in identifying damage. The influence of measurement errors and noise in the modal data was studied in all cases. To validate the experimental effectiveness of the damage estimation methods, static and dynamics tests were performed on a framed model, a simply supported beam, and a cantilever beam in order to determine the linear behavior changes due to the increase of the level of damage. The structural identification algorithms during this thesis were based on the knowledge type of the stiffness matrix or flexibility matrix to reduce the number of modal shapes and required coordinates for the structural assessment. The methods are intended to develop tools to produce a fast response and support for future decision procedures regarding to structures widely used, by excluding experimental information, thereby allowing a cost reduction of extensive and specific testing
7

Identification of civil engineering structures

Garcés, Francisco 22 February 2008 (has links) (PDF)
This thesis presents three methods to estimate and locate damage in framed buildings, simply-supported beams and cantilever structures, based on experimental measurements of their fundamental vibration modes. Numerical simulations and experimental essays were performed to study the effectiveness of each method. A numerical simulation of a multi-storey framed building, a real bridge and a real chimney were carried out to study the effectiveness of the methodologies in identifying damage. The influence of measurement errors and noise in the modal data was studied in all cases. To validate the experimental effectiveness of the damage estimation methods, static and dynamics tests were performed on a framed model, a simply supported beam, and a cantilever beam in order to determine the linear behavior changes due to the increase of the level of damage. The structural identification algorithms during this thesis were based on the knowledge type of the stiffness matrix or flexibility matrix to reduce the number of modal shapes and required coordinates for the structural assessment. The methods are intended to develop tools to produce a fast response and support for future decision procedures regarding to structures widely used, by excluding experimental information, thereby allowing a cost reduction of extensive and specific testing

Page generated in 0.065 seconds