• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An exploration of forensic accounting education and practice for fraud prevention and detection in Nigeria

Efiong, Eme Joel January 2013 (has links)
Whereas the problem of fraud is a global one, the rate and extent to which it is perpetrated in Nigeria, particularly in the public sector, is quite high and alarming. Literature reveals that different fraud prevention and detection mechanisms are being adopted to combat the menace of fraud; forensic accounting techniques appears to be the most effective and are currently used in most developed countries of the world. However, the extent to which forensic accounting techniques are being applied in fraud prevention and detection in Nigeria is not known. Also, the intention to use forensic accounting services in the public service has not been investigated. This study was therefore aimed at examining the application of forensic accounting techniques in fraud prevention and detection in Nigeria. Specific objectives were: (1) to investigate the mechanisms of fraud prevention and detection, and their levels of effectiveness in Nigeria, (2) to identify the major factors that hinder the application of forensic accounting techniques in fraud prevention and detection in Nigeria, (3) to examine practitioners' opinions and behavioural intention to use forensic accounting techniques in fraud prevention and investigation in Nigeria, (4) to explore the level of awareness of forensic accounting techniques in Nigeria and (5) to examine the readiness of universities in taking up forensic accounting courses. The study involved the collection of quantitative data. These data were collected from three sets of populations, viz. accounting students, accounting academics and accounting practitioners. The questionnaire served as the survey instruments. The data collected were analysed using appropriate statistical techniques and computer software. The study identified several fraud prevention and detection mechanisms that are currently used in Nigeria, such as systems of internal controls, operational audits and corporate code of conduct. Students' t-test indicates a significant difference between the perceived effectiveness and actual usage of fraud prevention and detection mechanisms in Nigeria. It was further discovered that the most effective mechanisms, like the forensic accounting techniques, are the least used in fraud prevention and detection. This implies that the current mechanisms of fraud prevention and detection are not proactive in dealing with the fraud menace. Also, legal, educational and political factors were identified to hinder the application of forensic accounting techniques in Nigeria. The level of awareness in forensic accounting in Nigeria is generally low. While the one-way analysis of variance indicates a significant variation among the three populations, it was discovered that students had the lowest level of awareness. Further findings of the study reveal that the universities are not yet ready to take up forensic accounting courses. Using the structural equation modelling (SEM), all the other seven propositions were supported. The findings of this study have both theoretical and practical implications. Theoretically, it further strengthened the findings of previous studies on the organisational intention. From the practical point of view, there is urgent need for manpower development in universities with specialisation in forensic accounting. Again, the educational institutions, and particularly the universities in Nigeria, would need to include forensic accounting courses in the undergraduate curriculum as education has been shown to be pivotal in creating awareness on the use of forensic accounting techniques. Furthermore, from the sampled space, the study has captured the current state of forensic accounting in Nigeria and the findings will be very useful for the public service, private organisations and policy makers.
2

Atualização dinâmica de modelo de regressão logística binária para detecção de fraudes em transações eletrônicas com cartão de crédito / Dynamic update of binary logistic regression model for fraud detection in electronic credit card transactions

Beraldi, Fidel 01 December 2014 (has links)
Com o avanço tecnológico e econômico, que facilitaram o processo de comunicação e aumento do poder de compra, transações com cartão de crédito tornaram-se o principal meio de pagamento no varejo nacional e internacional (Bolton e Hand , 2002). Neste aspecto, o aumento do número de transações com cartão de crédito é crucial para a geração de mais oportunidades para fraudadores produzirem novas formas de fraudes, o que resulta em grandes perdas para o sistema financeiro (Chan et al. , 1999). Os índices de fraudes têm mostrado que transações no comércio eletrônico (e-commerce) são mais arriscadas do que transações presencias em terminais, pois aquelas não fazem uso de processos seguros e eficientes de autenticação do portador do cartão, como utilização de senha eletrônica. Como os fraudadores se adaptam rapidamente às medidas de prevenção, os modelos estatísticos para detecção de fraudes precisam ser adaptáveis e flexíveis para evoluir ao longo do tempo de maneira dinâmica. Raftery et al. (2010) desenvolveram um método chamado Dynamic Model Averaging (DMA), ou Ponderação Dinâmica de Modelos, que implementa um processo de atualização contínuo ao longo do tempo. Nesta dissertação, desenvolvemos modelos DMA no espaço de transações eletrônicas oriundas do comércio eletrônico que incorporem as tendências e características de fraudes em cada período de análise. Também desenvolvemos modelos de regressão logística clássica com o objetivo de comparar as performances no processo de detecção de fraude. Os dados utilizados para tal são provenientes de uma empresa de meios de pagamentos eletrônico. O experimento desenvolvido mostra que os modelos DMA apresentaram resultados melhores que os modelos de regressão logística clássica quando analisamos a medida F e a área sob a curva ROC (AUC). A medida F para o modelo DMA ficou em 58% ao passo que o modelo de regressão logística clássica ficou em 29%. Já para a AUC, o modelo DMA alcançou 93% e o modelo de regressão logística clássica 84%. Considerando os resultados encontrados para os modelos DMA, podemos concluir que sua característica de atualização ao longo do tempo se mostra um grande diferencial em dados como os de fraude, que sofrem mudanças de comportamento a todo momento. Deste modo, sua aplicação se mostra adequada no processo de detecção de transações fraudulentas no ambiente de comércio eletrônico. / Regarding technological and economic development, which made communication process easier and increased purchasing power, credit card transactions have become the primary payment method in national and international retailers (Bolton e Hand , 2002). In this scenario, as the number of transactions by credit card grows, more opportunities are created for fraudsters to produce new ways of fraud, resulting in large losses for the financial system (Chan et al. , 1999). Fraud indexes have shown which e-commerce transactions are riskier than card present transactions, since those do not use secure and efficient processes to authenticate the cardholder, such as using personal identification number (PIN). Due to fraudsters adapt quickly to fraud prevention measures, statistical models for fraud detection need to be adaptable and flexible to change over time in a dynamic way. Raftery et al. (2010) developed a method called Dynamic Model Averaging (DMA), which implements a process of continuous updating over time. In this thesis, we develop DMA models within electronic transactions coming from ecommerce environment, which incorporate the trends and characteristics of fraud in each period of analysis. We have also developed classic logistic regression models in order to compare their performances in the fraud detection processes. The database used for the experiment was provided by a electronic payment service company. The experiment shows that DMA models present better results than classic logistic regression models in respect to the analysis of the area under the ROC curve (AUC) and F measure. The F measure for the DMA was 58% while the classic logistic regression model was 29%. For the AUC, the DMA model reached 93% and the classical model reached 84%. Considering the results for DMA models, we can conclude that its update over time characteristic makes a large difference when it comes to the analysis of fraud data, which undergo behavioral changes continuously. Thus, its application has proved to be appropriate for the detection process of fraudulent transactions in the e-commerce environment.
3

Atualização dinâmica de modelo de regressão logística binária para detecção de fraudes em transações eletrônicas com cartão de crédito / Dynamic update of binary logistic regression model for fraud detection in electronic credit card transactions

Fidel Beraldi 01 December 2014 (has links)
Com o avanço tecnológico e econômico, que facilitaram o processo de comunicação e aumento do poder de compra, transações com cartão de crédito tornaram-se o principal meio de pagamento no varejo nacional e internacional (Bolton e Hand , 2002). Neste aspecto, o aumento do número de transações com cartão de crédito é crucial para a geração de mais oportunidades para fraudadores produzirem novas formas de fraudes, o que resulta em grandes perdas para o sistema financeiro (Chan et al. , 1999). Os índices de fraudes têm mostrado que transações no comércio eletrônico (e-commerce) são mais arriscadas do que transações presencias em terminais, pois aquelas não fazem uso de processos seguros e eficientes de autenticação do portador do cartão, como utilização de senha eletrônica. Como os fraudadores se adaptam rapidamente às medidas de prevenção, os modelos estatísticos para detecção de fraudes precisam ser adaptáveis e flexíveis para evoluir ao longo do tempo de maneira dinâmica. Raftery et al. (2010) desenvolveram um método chamado Dynamic Model Averaging (DMA), ou Ponderação Dinâmica de Modelos, que implementa um processo de atualização contínuo ao longo do tempo. Nesta dissertação, desenvolvemos modelos DMA no espaço de transações eletrônicas oriundas do comércio eletrônico que incorporem as tendências e características de fraudes em cada período de análise. Também desenvolvemos modelos de regressão logística clássica com o objetivo de comparar as performances no processo de detecção de fraude. Os dados utilizados para tal são provenientes de uma empresa de meios de pagamentos eletrônico. O experimento desenvolvido mostra que os modelos DMA apresentaram resultados melhores que os modelos de regressão logística clássica quando analisamos a medida F e a área sob a curva ROC (AUC). A medida F para o modelo DMA ficou em 58% ao passo que o modelo de regressão logística clássica ficou em 29%. Já para a AUC, o modelo DMA alcançou 93% e o modelo de regressão logística clássica 84%. Considerando os resultados encontrados para os modelos DMA, podemos concluir que sua característica de atualização ao longo do tempo se mostra um grande diferencial em dados como os de fraude, que sofrem mudanças de comportamento a todo momento. Deste modo, sua aplicação se mostra adequada no processo de detecção de transações fraudulentas no ambiente de comércio eletrônico. / Regarding technological and economic development, which made communication process easier and increased purchasing power, credit card transactions have become the primary payment method in national and international retailers (Bolton e Hand , 2002). In this scenario, as the number of transactions by credit card grows, more opportunities are created for fraudsters to produce new ways of fraud, resulting in large losses for the financial system (Chan et al. , 1999). Fraud indexes have shown which e-commerce transactions are riskier than card present transactions, since those do not use secure and efficient processes to authenticate the cardholder, such as using personal identification number (PIN). Due to fraudsters adapt quickly to fraud prevention measures, statistical models for fraud detection need to be adaptable and flexible to change over time in a dynamic way. Raftery et al. (2010) developed a method called Dynamic Model Averaging (DMA), which implements a process of continuous updating over time. In this thesis, we develop DMA models within electronic transactions coming from ecommerce environment, which incorporate the trends and characteristics of fraud in each period of analysis. We have also developed classic logistic regression models in order to compare their performances in the fraud detection processes. The database used for the experiment was provided by a electronic payment service company. The experiment shows that DMA models present better results than classic logistic regression models in respect to the analysis of the area under the ROC curve (AUC) and F measure. The F measure for the DMA was 58% while the classic logistic regression model was 29%. For the AUC, the DMA model reached 93% and the classical model reached 84%. Considering the results for DMA models, we can conclude that its update over time characteristic makes a large difference when it comes to the analysis of fraud data, which undergo behavioral changes continuously. Thus, its application has proved to be appropriate for the detection process of fraudulent transactions in the e-commerce environment.

Page generated in 0.4262 seconds