• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 13
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of High Intensity, Large-Scale Freestream Combustor Turbulence On Heat Transfer in Transonic Turbine Blades

Nix, Andrew Carl 01 May 2003 (has links)
The influence of freestream turbulence representative of the flow downstream of a modern gas turbine combustor and first stage vane on turbine blade heat transfer has been measured and analytically modeled in a linear, transonic turbine cascade. Measurements were performed on a high turning, transonic turbine blade. The facility is capable of heated flow with inlet total temperature of 120C and inlet total pressure of 10 psig. The Reynolds number based on blade chord and exit conditions (5x106) and the inlet and exit Mach numbers (0.4 and 1.2, respectively) are representative of conditions in a modern gas turbine engine. High intensity, large length-scale freestream turbulence was generated using a passive turbulence-generating grid to simulate the turbulence generated in modern combustors after it has passed through the first stage vane row. The grid produced freestream turbulence with intensity of approximately 10-12% and an integral length scale of 2 cm near the entrance of the cascade passages, which is believed to be representative of the core flow entering a first stage gas turbine rotor blade row. Mean heat transfer results showed an increase in heat transfer coefficient of approximately 8% on the suction surface of the blade, with increases on the pressure surface on the order of two times higher than on the suction surface (approximately 17%). This corresponds to increases in blade surface temperature of 5-10%, which can significantly reduce the life of a turbine blade. The heat transfer data were compared with correlations from published literature with good agreement. Time-resolved surface heat transfer and passage velocity measurements were performed to investigate and quantify the effects of the turbulence on heat transfer and to correlate velocity fluctuations with heat transfer fluctuations. The data demonstrates strong coherence in velocity and heat flux at a frequency correlating with the most energetic eddies in the turbulence flow field (the integral length-scale). An analytical model was developed to predict increases in surface heat transfer due to freestream turbulence based on local measurements of turbulent velocity fluctuations (u'RMS) and length-scale (Lx). The model was shown to predict measured increases in heat flux on both blade surfaces in the current data. The model also successfully predicted the increases in heat transfer measured in other work in the literature, encompassing different geometries (flat plate, cylinder, turbine vane and turbine blade) as well as both laminar and turbulent boundary layers, but demonstrated limitations in predicting early transition and heat transfer in turbulent boundary layers. Model analyses in the frequency domain provided valuable insight into the scales of turbulence that are most effective at increasing surface heat transfer. / Ph. D.
2

Pitching airfoil study and freestream effects for wind turbine applications

Gharali, Kobra January 2013 (has links)
A Horizontal Axis Wind Turbine (HAWT) experiences imbalanced loads when it operates under yaw loads. For each blade element of the aerodynamically imbalanced rotor, not only is the angle of attack unsteady, but also the corresponding incident velocity, a fact usually unfairly ignored. For the unsteady angle of attack, a pitch oscillating airfoil has been studied experimentally and numerically when 3.5×10⁴<Re<10⁵. For small wind tunnel airfoils, Particle Image Velocimetry (PIV) was utilized to determine the aerodynamic loads and the pressure field where other measurement techniques are either intrusive or very challenging. For dynamic airfoils in highly separated flow fields, i.e., deep dynamic stall phenomena, loads were calculated successfully based on the control-volume approach by exploring ways to reduce the level of uncertainties in particular for drag estimation. Consecutive high resolution PIV velocity fields revealed that increasing the reduced frequency was followed by an enriched vortex growth time and phase delay as well as a reduced number of vortices during upstroke motion. Moreover, the locations of the vortices after separation were influenced by each other. Laminar separation bubble height also showed a reducing trend as the reduced frequency increased. The nature of the vortex sheet vortices before stall were explored in two Reynolds numbers, with and without laminar separation bubbles, at low angles of attack. For all cases, a vortex sheet was the result of random vortex sheding while a longer vortex sheet was more favorable for lift augmentation. A wake study and averaged drag calculation at low angles of attack were also performed with Laser Doppler Anemometry (LDA) for Re=10⁵. For the unsteady incident velocity, longitudinal freestream oscillations have been studied numerically, since experimental study of an unsteady freestream is challenging. In this regard, the streamwise freestream velocity and pitch angle of incidence oscillated with the same frequency in a wide range of phase differences. Changing the phase difference caused variation of the results, including significantly augmented and dramatically damped dynamic stall loads, both increasing and decreasing trends for vortex growth time during phase increase and shifted location of the maximum loads. The results showed strong dependency on the velocity and acceleration of the freestream during dynamic stall and the dynamic stall characteristics differed significantly from those of the steady freestream states. The results also demonstrated consistent trends regardless of the airfoil shape and the Reynolds number while Re=10⁵ and 10⁶. The vortex study presented here not only provides information about the unsteady aerodynamic forces, but also knowledge regarding airfoil noise generation and distributed flow for downstream objects beyond wind turbine applications.
3

Effects of Freestream Turbulence, Turbulence Length Scale, and Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade

Carullo, Jeffrey Stephen 09 January 2007 (has links)
This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitch of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.78 and 1.03 which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6 x 105, 8 x 105, and 11 x 105, based upon true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared to the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively. / Master of Science
4

Effect of freestream turbulence on roughness-induced crossflow instability

Hosseini, Seyed M., Hanifi, Ardeshir, Henningson, Dan January 2013 (has links)
The effect of freestream turbulence on generation of crossflow disturbances over swept wings is investigated through direct numerical simulations.  The set up follows  the  experiments  performed  by Downs  et  al.  in their  TAMU  experi- ment.  In this experiment the authors use ASU(67)-0315 wing geometry which promotes  growth  of crossflow  disturbances.   Distributed  roughness  elements are locally placed near the leading edge with a span-wise wavenumber, to ex- cite the corresponding crossflow vortices.  The response of boundary layer to external disturbances such as roughness heights, span-wise wavenumbers, Rey- nolds numbers and freestream turbulence characteristics are studied.  It must be noted that the experiments were conducted at a very low level of freestream turbulence  intensity  (T u).   In this  study,  we fully  reproduce the  freestream isotropic homogenous turbulence through a DNS code using detailed freestream spectrum data provided by the experiment. The generated freestream fields are then applied as the inflow boundary condition for direct numerical simulation of the wing. The geometrical set up is the same as the experiment along with application of distributed roughness elements near the leading edge to precipi- tate stationary crossflow disturbances.  The effects of the generated freestream turbulence are then studied on the initial amplitudes and growth of the bound- ary layer perturbations.  It appears that the freestream turbulence damps out the dominant stationary crossflow vortices. / <p>QC 20130604</p>
5

The Effects of Freestream Turbulence on Serpentine Diffuser Distortion Patterns

Johnson, Jesse Scott 10 December 2012 (has links) (PDF)
Serpentine diffusers have become a common feature in modern aircraft as they allow for certain benefits that are impossible with a traditional linear configuration. With the benefits, however, come certain disadvantages, namely flow distortions that reduce engine efficiency and decrease engine surge stability margins. These distortions are now being researched comprehensively to determine solutions for mitigating the adverse effects associated with them. This study investigates how varying the freestream turbulence intensity of the flow entering a serpentine diffuser affects the distortion patterns that are produced by the diffuser. Experiments were performed with a model serpentine diffuser on the Annular Cascade Facility of the Air Force Research Laboratory at Wright-Patterson Air Force Base. Hot wire anemometry was used to measure inlet turbulence, while static pressure probes located axially along the upper and lower surface of the model diffuser and total pressure probes located across the aerodynamic interface plane (AIP) were used to measure the distortion patterns of the flow passing through the diffuser. Varying levels of inlet freestream turbulence, ranging from 0 to 4%, were generated using square and round bar turbulence screens in three distinct test configurations. Axial static pressure measurements indicate that increasing turbulence slightly affects flow separation development downstream of the second turn. This effect is also seen at the AIP where the total pressure recovery increases with increasing level of inlet turbulence in the region of flow separation at the upper surface. The total pressure recovery along the lower surface is also seen to be increased with higher inlet turbulence. However, total pressure recovery increase across the entire AIP is almost negligible. Overall, the inlet freestream turbulence has a minor effect on the distortion patterns caused by the serpentine diffuser when compared with proven active inlet flow control methods.
6

Global Pressure and Temperature Surface Measurements on a NACA 0012 Airfoil in Oscillatory Compressible Flow at Low Reduced Frequencies

Jensen, Christopher Douglas 19 June 2012 (has links)
No description available.
7

Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade

Nasir, Shakeel 01 September 2008 (has links)
One way to increase cycle efficiency of a gas turbine engine is to operate at higher turbine inlet temperature (TIT). In most engines, the turbine inlet temperatures have increased to be well above the metallurgical limit of engine components. Film cooling of gas turbine components (blades and vanes) is a widely used technique that allows higher turbine inlet temperatures by maintaining material temperatures within acceptable limits. In this cooling method, air is extracted from the compressor and forced through internal cooling passages within turbine blades and vanes before being ejected through discrete cooling holes on the surfaces of these airfoils. The air leaving these cooling holes forms a film of cool air on the component surface which protects the part from hot gas exiting the combustor. Design optimization of the airfoil film cooling system on an engine scale is a key as increasing the amount of coolant supplied yields a cooler airfoil that will last longer, but decreases engine core flow—diminishing overall cycle efficiency. Interestingly, when contemplating the physics of film cooling, optimization is also a key to developing an effective design. The film cooling process is shown to be a complex function of at least two important mechanisms: Increasing the amount of coolant injected reduces the driving temperature (adiabatic wall temperature) of convective heat transfer—reducing heat load to the airfoil, but coolant injection also disturbs boundary layer and augments convective heat transfer coefficient due to local increase in freestream turbulence. Accurate numerical modeling of airfoil film cooling performance is a challenge as it is complicated by several factors such as film cooling hole shape, coolant-to-freestream blowing ratio, coolant-to-freestream momentum ratio, surface curvature, approaching boundary layer state, Reynolds number, Mach number, combustor-generated high freestream turbulence, turbulence length scale, and secondary flows just to name a few. Until computational methods are able to accurately simulate these factors affecting film cooling performance, experimental studies are required to assist engineers in designing effective film cooling schemes. The unique contribution of this research work is to experimentally and numerically investigate the effects of coolant injection rate or blowing ratio and exit Reynolds number/Mach number on the film cooling performance of a showerhead film cooled first stage turbine vane at high freestream turbulence (Tu = 16%) and engine representative exit flow conditions. The vane was arranged in a two-dimensional, linear cascade in a heated, transonic, blow-down wind tunnel. The same facility was also used to conduct experimental and numerical study of the effects of freestream turbulence, and Reynolds number on smooth (without film cooling holes) turbine blade and vane heat transfer at engine representative exit flow conditions. The showerhead film cooled vane was instrumented with single-sided platinum thin film gauges to experimentally determine the Nusselt number and film cooling effectiveness distributions over the surface from a single transient-temperature run. Showerhead film cooling was found to augment Nusselt number and reduce adiabatic wall temperature downstream of injection. The adiabatic effectiveness trend on the suction surface was also found to be influenced by a favorable pressure gradient due to Mach number and boundary layer transition region at all blowing ratio and exit Mach number conditions. The experimental study was also complimented with a 3-D CFD effort to calculate and explain adiabatic film cooling effectiveness and Nusselt number distributions downstream of the showerhead film cooling rows of a turbine vane at high freestream turbulence (Tu = 16%) and engine design exit flow condition (Mex = 0.76). The research work presents a new three-simulations technique to calculate vane surface recovery temperature, adiabatic wall temperature, and surface Nusselt number to completely characterize film cooling performance in a high speed flow. The RANS based v2-f turbulence model was used in all numerical calculations. CFD calculations performed with experiment-matched boundary conditions showed an overall good trend agreement with experimental adiabatic film cooling effectiveness and Nusselt number distributions downstream of the showerhead film cooling rows of the vane. / Ph. D.
8

Performance of a Showerhead and Shaped Hole Film Cooled Vane at High Freestream Turbulence and Transonic Conditions

Newman, Andrew Samuel 04 June 2010 (has links)
An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a 1st stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000; 0.85/1,150,000; and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000 three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by leading edge diameter of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5x) over the showerhead only NGV and agreement with published showerhead-shaped hole data. NHFR was shown to increase substantially (average 2.6x increase) with the addition of shaped holes, with only a small increase (average 1.6x increase) in required coolant mass flow. Heat transfer and effectiveness augmentation with increasing blowing ratio was shown on the pressure side, however the suction side was shown to be less sensitive to changing blowing ratio. Boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number. / Master of Science
9

On stability, transition and turbulence in three-dimensional boundary-layer flows

Hosseini, Seyed Mohammd January 2015 (has links)
A lot has changed since that day on December 17, 1903 when the Wright brothers made the first powered manned flight. Even though the concepts behind flying are unaltered, appearance of stat-of-the-art modern aircrafts has undergone a massive evolution. This is mainly owed to our deeper understanding of how to harness and optimize the interaction between fluid flows and aircraft bodies. Flow passing over wings and different junctions on an aircraft faces numerous local features, for instance, acceleration or deceleration, laminar or turbulent state, and interacting boundary layers. In our study we aim to characterize some of these flow features and their physical roles. Primarily, stability characteristics of flow over a wing subject to a negative pressure gradient are studied. This is a common condition for flows over swept wings. Part of the current numerical study conforms to existing experimental studies where a passive control mechanism has been tested to delay laminarturbulent transition. The same flow type has also been considered to study the receptivity of three-dimensional boundary layers to freestream turbulence. The work entails investigation of effects of low-level freestream turbulence on crossflow instability, as well as interaction with micron-sized surface roughness elements. Another common three-dimensional flow feature arises as a resultof stream-lines passing through a junction, the so-calledcorner-flow. For instance, thisflow can be formed in the junction between the wing and fuselage on aplane.A series of direct numerical simulations using linear Navier-Stokes equationshave been performed to determine the optimal initial perturbation. Optimalrefers to perturbations which can gain the maximum energy from the flow overa period of time. In other words this method seeks to determine theworst-casescenario in terms of perturbation growth. Here, power-iterationtechnique hasbeen applied to the Navier-Stokes equations and their adjoint to determine theoptimal initial perturbation. Recent advances in super-computers have enabled advance computational methods to increasingly contribute to design of aircrafts, in particular for turbulent flows with regions of separation. In this work we investigate theturbulentflow on an infinite wing at a moderate chord Reynolds number of Re= 400,000 using a well resolved direct numerical simulation. A conventional NACA4412 has been chosen for this work. The turbulent flow is characterizedusing statistical analysis and following time history data in regions with interesting flow features. In the later part of this work, direct numerical simulation has been chosen as a tool to mainly investigate the effect of freestream turbulence on the transition mechanism of flow from laminar to turbulent around a turbine blade. / <p>QC 20151125</p>
10

A Study On Boundary Layer Transition Induced By Large Freestream Disturbances

Mandal, Alakesh Chandra 12 1900 (has links) (PDF)
The initial slow viscous growth of the Tollmein-Schlichting wave in a canonical boundary layer transition is absent in bypass and wake-induced transitions. Although there have been a great deal of studies pertaining to bypass transition in boundary layers, the underlying breakdown mechanism is not clearly understood and it continues to be a subject of interest. Similarly, a wake-induced transition caused by Karman wake in the freestream remains poorly understood. The breakdown in this case is caused by anisotropic disturbances containing large scale unsteadiness in the freestream. Differing view points among workers on the transition process have also added to the complexities. In this thesis, bypass and wake-induced boundary layer transitions studied experimentally towards understanding various flow breakdown features are reported. The measurements were made on a flat plate boundary layer in a low-speed wind tunnel. The particle image velocimetry (PIV) technique was extensively used. Various grids were used to generate nearly isotropic freestream turbulence. A circular cylinder was placed at different heights from the plate leading edge to generate Karman wake in the freestream. Two cylinders of different diameters were used to vary the Reynolds number(based on the cylinder diameter). The PIV measurements being simultaneous over a large spatial domain enabled to assess various spatial transitional flow structures. In the case of bypass transition, the streamwise velocity fluctuation, u, is found to exhibit some organized negative and positive fluctuations that dominate the flow during transition, and confirm the simulation results reported in the literature. These positive and negative u fluctuations are found to be associated with the streak unsteadiness. By conditional sampling of these positive and negative u fluctuations, we find that urms (root-mean-squaredof u)can be expressed as a linear combination of urms,f and urms,b,i.e. urms = a(urms,f + urms,b); ais constant, and the subscripts fand bdenote the positive and nega-tive ufluctuations, respectively. Both urms,f and urms,b arefoundto follow the non-modal growth distribution. The wall-normal results clearly show that an inclined shear layer is often associated with an organized structure of negative ufluctuations and an inflectional in-stantaneous velocity profile. These inclined shear layers appear to be similar to those in ribbon-induced transition. The turbulent spot precursor appears to be the vortex shedding from an oscillating in-clined shear layer. Interestingly, the normalized vortex shedding fre-quency is found to be Reynolds number invariant, as in the case of ribbon-induced transition. The present study also confirms the sim-ulated turbulent spot features, including a thin log-law at the break-down stage. The spanwise plane PIV results reveal the signature of streak secondary instability in the flow in terms of symmetric and anti-symmetric streaks oscillations. The initial growth of streak amplitude is followed by a slow decay. The maximum streak amplitude is well above30% of the freestream velocity. These two aspects provide support to the streak instability analysis reported in the literature. While the present wake-induced transition study provides some sup-port to the available numerical simulation and experimental results, some new results have also emerged. The measured sharp rise in the disturbance energy during transition is found to be closer to the simulated result, compared to the difference reported in the literature. The spanwise vortices in the early stage, as also seen in other experimental studies, deform leading to the formation of lambda structures, the signature of which is found by the linear stochastic analysis. With increased Reynolds number and decreased cylinder height from the plate, the physical size of the lambda structure is found to decrease. These lambda structures are often found to appear in a staggered manner in the spanwise plane, as in the case of sub-harmonic boundary layer transition. Although a sub-harmonic peak in the frequency spectra is reported in the literature, as also in the present study, the clear staggered pattern went unnoticed. Streamwise streaks are subsequently generated due to the mean shear stretching of these lambda vortices. The spanwise spacing of these streamwise streaks is found to be comparable with the recent simulation results. Also, these streaks are found to undergo somewhat sinuous-like oscillations, compared to the only varicose type oscillations reported in the literature. The streak amplitude is found to saturate at about 35% of the freestream speed. Here again an inclined shear layer in the wall-normal plane is associated with organized negative u fluctuations and an inflectional instantaneous velocity profile. The movement of the peak urms towards the wall is found to be due to the positive u fluctuation, which follows a hairpin-like structure. The inclined shear layers herein are associated with the lambda or a hairpin-like structure. As in a by-pass transition, an inclined shear layer, vortex shedding from it, the imprint of which is also found in the linear stochastic analysis are present. The normalized high frequency shed vortices is found to be Reynolds number invariant in the present wake-induced transition, as in ribbon-induced and bypass transitions. Compared to the re-cent suggestion that the parent-offspring mechanism is the governing self-sustaining mechanism in the boundary layer, the present study suggests that streak-instability mechanism is also present. The proper orthogonal decomposition(POD) analysis of the experimental data was carried out with an emphasis on the bypass transition case studied. The first few energetic POD modes are found to capture the dominant flow structures, i.e. the organized positive and negative u fluctuations. In the case of bypass transition, the first two energetic POD modes are self-similar, i.e. independent of the freestream turbulent intensity and the Reynolds number. An attempt is also made to construct a low-dimensional model with the POD eigenfunction modes to predict the qualitative dynamics of bypass transition. This has revealed the existence of a traveling disturbance in the bypass transition. On the whole, the present study shows some similar breakdown features in bypass and wake-induced transitions, although more studies in this regard are essential.

Page generated in 0.0913 seconds