• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TUNABLE FSK/AM SIGNAL DETECTOR ON A 6U-VME CARD

Hordeski, Theodore J.,Jr. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / The telemetry and aerospace communities require communications equipment providing various modulation and demodulation formats. One format, with application in Space Ground Link Subsystems (SGLS), utilizes a Ternary (tri-tone) Frequency Shift-Keyed (FSK) signal Amplitude Modulated (AM) by a triangle waveform. Historically, SGLS equipment has operated with a fixed tri-tone frequency set (e.g., 65 kHz, 76 kHz and 95 kHz). The need for additional transmission channels and increased bandwidth efficiency creates the requirement for equipment with the flexibility to generate and receive varied and higher frequency tone sets. Combining analog and digital techniques, GDP Space Systems has developed the FDT001. It is an FSK/AM detector which recovers a bit rate clock at one of four selectable bit rates and reproduces ternary FSK modulation data over a widely tunable range of tone frequencies. The tuning range is expanded by using two methods of digital frequency discrimination. The following paper describes the design of the FDT001.
2

Development of a Reliable Metal-Insulator-Metal Bilayer Tunnel Junction for Wideband Detectors

Ratnadurai, Rudraskandan 01 January 2012 (has links)
Detectors and sensors are an integral part of modern electronics and are crucial to highly sensitive applications. Metal-Insulator-Metal (MIM) tunnel junctions have been explored for the past five decades and are still being investigated due to its wide use of applications such as mixers, capacitors, detectors, rectifiers and energy conversion devices. In this research, various designs of thin film based tunnel junctions have been investigated and the optimum one picked for the purpose of a wide band detector up to 10GHz based on their sensitivities. A modified design with an isolation layer incorporating a self-aligning method to increase fabrication throughput was developed. A mask for the reliability testing of multiple devices with different areas was also developed. Nickel Oxide based insulators with different stoichiometries have been incorporated in the fabrication of the device to identify which stoichiometry gives the best performance for high frequency applications. Nickel Oxide (NiO), Zinc Oxide (ZnO) and the combination of the two have been deposited using reactive sputtering and investigated as insulator materials. The bilayer devices showed increased sensitivities at lower turn on voltages and very good efficiencies at 100MHz and 1GHz. Although, the MIM device provides a simple structure, some of the critical parameters required to quantify the device functionality are still being explored. Based on the parameters, a criterion was developed to help engineer a tunnel device for a desired detectivity.
3

A Wideband Precision Quadrature Phase Shifter

Noall, Steve T. 28 June 2011 (has links) (PDF)
A new circuit is proposed that uses an RC-CR filter in a feedback configuration to achieve a wideband precision quadrature phase shift with constant amplitude response. Such a circuit can be used to perform image rejection in a low IF receiver using the Hartley method. Simulation results show that the circuit can achieve an average image rejection ratio of 50 dB over a 16 MHz bandwidth. The feedback loop enables the circuit to maintain high accuracy over process and temperature.
4

Softwarový analyzátor a dolaďovač záznamenaného vokálu / Software analysator and tuner of vocal records

Smatana, Tomáš January 2015 (has links)
This thesis deals with the analysis methods used to fundamental frequency detection and methods for changing the fundamental frequency of the audio signal containing vocals. It also explores general musical intonation theory. On the basis of this analysis, suitable methods are selected for the follow realization software fine-tuning vocal audio signal.
5

Experimental Studies Of Electron Spin Dynamics In Semiconductors Using A Novel Radio Frequency Detection Technique

Guite, Chinkhanlun 06 1900 (has links) (PDF)
A novel experimental setup has been realized to measure weak magnetic moments which can be modulated at radio frequencies (~1–5 MHz). Using an optimized radio-frequency (RF) pickup coil and lock-in amplifier, an experimental sensitivity of 10 -15 Am2 corresponding to 10 -18 emu has been demonstrated with a one second time constant. The detection limit at room temperature is 9.3 10 -16 Am2/√Hz limited by Johnson noise of the coil. In order to demonstrate the sensitivity of this technique it was used to electrically detect the polarized spins in semiconductors in zero applied magnetic fields. For example in GaAs, the magnetic moment due to a small number (~ 7 x 108) of spin polarized electrons generated by polarization modulated optical radiation was detected. Spin polarization was generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by the sensitive radio-frequency coil. Using a radio-frequency lock-in amplifier, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of ~ 10–20% could be determined for Ge at 1342 nm excitation wavelength at 127 K. In the presence of a small external magnetic field, the signal decayed according to the Hanle Effect, from which a spin lifetime of 4.6 ± 1.0 ns for electrons in bulk Ge at 127 K was extracted. The spin dynamics in n-Ge was further explored and the temperature dependence of the spin lifetime was plotted for a temperature range of about 90 K to 180 K. The temperature dependence of the optical pumping efficiency was also measured though no quantitative conclusions could be derived. The signals observed for semi-insulating GaAs, n-GaAs, GaSb and CdTe which are direct gap semiconductors are much larger than expected (almost two orders of magnitude). An attempt was made to explain this unexpected behavior of these direct gap semiconductors using the spin hall effect.

Page generated in 0.6208 seconds