• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a Dissolved Oxygen Optical Sensing Device for Cell Growth and Metabolism Monitoring in Bioreactors

Rosa, Raelyn K. 04 1900 (has links)
<p>An electro-optical sensor module was designed to monitor the level of dissolved oxygen (DO) using the method of frequency domain fluoroscopy. Frequency domain fluoroscopy is an optical method that detects the concentration of an analyte by indirectly monitoring the fluorescent lifetime decay. A planar film containing oxygen sensitive fluorophores interacts with a liquid solution, where the percent DO dictates the fluorescent lifetime decay. Amplitude modulated LED emission is created using an electrically implemented oscillator, exciting the oxygen sensitive fluorophores. The emission light from the fluorophores is detected by a photodiode and conditioned. The timing characteristics of the excitation and emission light waveforms are interpreted by a microcontroller. Time delay values have been correlated to actual percent DO values experimentally, and appropriate data modeling has been implemented for calibration purposes. This design is appropriate for application in bioreactors, presenting a functional and cost effective design. Future research can be performed to extrapolate the microcontroller platform to host a pH module, cell number module and glucose module, providing sufficient feedback to an automated bioreactor systems.</p> / Master of Applied Science (MASc)

Page generated in 0.0798 seconds