Spelling suggestions: "subject:"friction""
31 |
Drag reduction in large diameter hydraulic capsule pipeline /Wu, Gangwei, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 179-185). Also available on the Internet.
|
32 |
Drag reduction in large diameter hydraulic capsule pipelineWu, Gangwei, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 179-185). Also available on the Internet.
|
33 |
Frictional Properties of Carbon-Carbon Composites and Their Relation to Fiber Architecture and MicrostructureLim, Wei Jun 01 December 2016 (has links)
The use of carbon-carbon (C/C) composites for clutch application requires a basic understanding of the structural characteristics of the composites that control their frictional and engineering properties. These are related to the microstructure of the matrix and fiber architecture, with the character of fiber/matrix interface and type of defects, porosity and microcracks being the most relevant. The purpose of this study is to examine and characterize the relation between the fiber architecture of selected C/C composites and its relation to their frictional properties when subjected to different normal forces and relative humidity. Friction tests is conducted using a Brüker Universal Friction Tester (UFT). This study also seeks to characterize and analyze the microstructure and fiber architecture through Polarized Light Microscopy, X-Ray Diffraction and Ultrasound Scans. This study shows that the Coefficient of Friction (COF) at constant normal force and RPM are always slightly lower for the samples with surface fibers orientated at 45° relative to the direction of rotation compared to samples with surface fibers orientated 0/90° at 50% relative humidity. The percent difference ranges from 1.62% to 15.30%. However, at 85% relative humidity, the average COF at the constant normal force and RPM are always slightly higher for the 45° compared to 0/90° samples for Rotor samples, while in contrast the average COF are always lower for the 45° samples compared to 0/90° samples for Stator samples. The percent difference ranges from 3.14% to 35.46%. This study found significant differences between the 0/90° samples and the 45° samples. There is indication that the fiber orientation can cause differences between frictional properties even if the clutches are made from the same material. The change in humidity also significantly changes the resulting COF.
|
34 |
A numerical study of resistance in a rough walled channel flow where the ratio of roughness length scale to the depth of flow varies over a wide rangeSenior, A. K. January 2009 (has links)
Numerical calculations were performed over a variety of two-dimensional rib roughness configurations in which the ratio of flow depth to roughness height was varied from 1.1 to 40. Periodically fully developed flow was achieved by employing periodic boundary conditions and the effect of turbulence was accounted for by a two-layer model. These calculations were used to test the hypothesis that any rough wall resistance may be reduced to an equivalent wall shear stress located on a plane wall. The position of the plane wall is determined by a novel method of prediction obtained by consideration of strearnwise force moments. The resistance is then determined by three dynamically significant length scales: the first (yo) specifies the position of the equivalent plane wall, the second is the depth of flow h and the third is similar to Nikuradse's sand grain roughness k,,. The latter length scale is however depth dependent and a universal relationship is postulated: ks y,, -,= F/Tk where ksw is the asymptotic value of ks at very large flow depths. For the calculation of friction factor, a resistance equation is proposed of the form typical of fully rough flows. These postulates are supported by the numerical model results though further work including physical experiments is required to confirm them. Before applying the two-layer model to this problem it was tested on smooth rectangular duct flows and Schlichting's (1936) long angle roughness experiments. The opportunity was taken to further explore these flows, and in addition calculations were carried out for Grass et al's (1991) open channel rib roughness experiments. The periodic boundary conditions were also applied to a larninar counter-flow plate-fin heat exchanger. A novel source-sink arrangement for heat flux was developed in order to implement these boundary conditions.
|
35 |
A Numerical study of resistance in a rough walled channel flow where the ratio of roughness length scale to the depth of flow varies over a wide rangeSenior, A K 28 October 2009 (has links)
Numerical calculations were performed over a variety of two-dimensional rib roughness
configurations in which the ratio of flow depth to roughness height was varied from 1.1
to 40. Periodically fully developed flow was achieved by employing periodic boundary
conditions and the effect of turbulence was accounted for by a two-layer model.
These calculations were used to test the hypothesis that any rough wall resistance may
be reduced to an equivalent wall shear stress located on a plane wall. The position of the
plane wall is determined by a novel method of prediction obtained by consideration of
strearnwise force moments. The resistance is then determined by three dynamically
significant length scales: the first (yo) specifies the position of the equivalent plane wall,
the second is the depth of flow h and the third is similar to Nikuradse's sand grain
roughness k,,. The latter length scale is however depth dependent and a universal
relationship is postulated:
ks
y,,
-,= F(Tkwhere
ksw is the asymptotic value of ks at very large flow depths. For the calculation of
friction factor, a resistance equation is proposed of the form typical of fully rough flows.
These postulates are supported by the numerical model results though further work
including physical experiments is required to confirm them.
Before applying the two-layer model to this problem it was tested on smooth rectangular
duct flows and Schlichting's (1936) long angle roughness experiments. The opportunity
was taken to further explore these flows, and in addition calculations were carried out
for Grass et al's ( 199 1) open channel rib roughness experiments.
The periodic boundary conditions were also applied to a larninar counter-flow plate-fin
heat exchanger.A novel source-sinka rrangemenfto r heat flux was developedi n order
to implement these boundary conditions.
|
36 |
Stabilization of frictional soil through injection using CIPS (Calcite In-situ Precipitation System)Palmén, Anders January 2012 (has links)
The precipitation system CIPS (Calcite In-situ Precipitation System) has been created as a permeation grouting system based on a two component fluid with the intention of slowly permeate and fill the pores. It causes cementation through a chemical reaction which bonds the soil particles together at the contact points. CIPS mimics one of the natural reactions in nature where sandstone is formed through calcite precipitation. This system is used in Australia with excellent results and there are many factors governing the outcome of the method, some of these factors are: flow rate, pressure, time, chemical recipe, temperature, composition of the soil matrix and number of performed injections at the same point of location. Some of these factors have been the focus of this report and where they have been examined from a Scandinavian point of view where our ground temperature conditions and soil compositions have governed the outcome of the accomplished results. The strength increase has been examined through laboratory tests where natural sand from a building site with known particle size and dry density has been treated once with the CIPS Fluid. This treatment was completed in a temperature controlled room of 12 degrees after which the treated soil was tested by unconfined compression tests. Even a rather low increase in bearing capacity of the soil would result in benefits during the construction of temporary constructions during the early building stages foundation work. Since the desired increase in bearing capacity of the soil is fairly low, 50-100 kPa, the investigations has concentrated on one single injection, in order to study if there is a clear trend in the increase in bearing capacity, and if it can be roughly predicted. In addition to the above mentioned laboratory work a small scale field test has been conducted, where the CIPS Fluid was injected into the ground with the aim of creating a column shaped object. This column was left for a certain time, a time long enough for the calcite crystal to bond the soil grains and generate an increase in strength. When the assumed cementation had occurred an ocular assessment was carried out in order to predict whether the strength had increased or not, and to what degree. Based on the laboratory results, some evidence of that strength increase occurs due to either the discharge of the spent fluid containing ammonium chloride or the process of drying. Either way, the strength increase takes place during the grounds natural process of adjusting towards the natural water content equilibrium for the specific site of interest. A strength increase at the laboratory experiments of between approximately 60-220 kPa has been achieved. The field tests where slightly less rewarding when difficulties of injecting the CIPS Fluid into the sandy soil arose due to challenging task of designing a pumping system where both a low pressure, less than the overburden pressure, and a low flow rate, less than 7 litres per minute, could be controlled. The flow rate could be controlled but with the effect of the pressure rising to too high levels. Due to the observations of CIPS Fluids exiting the ground at other points than near the injection spear, soil fractures are assumed to have occurred at one ore many locations. The volumes treated with CIPS Fluid displayed no increase in strength as long as they appeared somewhat wet with the spent fluid. When this fluid containing ammonium chloride vanished from the treated soil and the pH-value dropped, the build up in strength through calcite crystallisation at the contact points began. This crystallization which leads to a cementation was observed at the centre of the small spheres achieved through injection in the ground, which proves that the Calcite In-situ Precipitation System has caused a cementation of the soil grains treated.
|
37 |
Estimation of frictional parameters in afterslip areas by assimilating GPS data: Application to the 2003 Tokachi-oki earthquake / GPSデータの同化による余効すべり域の摩擦パラメータの推定 : 2003年十勝沖地震への適用Kano, Masayuki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18081号 / 理博第3959号 / 新制||理||1571(附属図書館) / 30939 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 宮﨑 真一, 教授 福田 洋一, 教授 平原 和朗 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
38 |
Water-drag coefficients in the Beaufort Sea : AIDJEX 1975-76LeBlanc, Alain, 1952- January 1981 (has links)
No description available.
|
39 |
Experimental Studies on The Mechanical Behaviour of Cohesive Frictional Granular MaterialsKandasami, Ramesh Kannan January 2016 (has links) (PDF)
Thss thesis presents the results of an experimental programme on the static mono-tonic response of cohesive-frictional granular materials. The purpose of this experimental programme was to gain insight into the mechanical behaviour of uncemented sands, and sands with small percentages of cementation. With this objective in sight, the research involved understanding and delineating the e ects of four variables: the intermediate principal stress, stress inclination, cohesion (or cementation), and particle morphology. The hollow cylinder torsion (HCT) apparatus, which allows control over both the magnitude and direction of principal stresses, was used in this study to carry out a series of elemental tests on the model materials. The test results were analysed in a plasticity theory based framework of critical state soil mechanics.
Drained and undrained HCT tests were conducted on a model angular sand to understand the combined influence of intermediate principal stress ratio (b) and principal stress inclination ( ). Sand specimens were reconstituted to a given density and confining pressure, and were sheared to large strains towards a critical state. The stresses at the critical state with varying `b' were mapped on an octahedral plane to obtain a critical state locus. The shape of this locus closely resembles a curved triangle. Also these specimens showed increased non-coaxiality between the stress and strain increment directions at lower strains. This non-coaxiality decreased significantly, and the response at the critical state was by and large coaxial. The effect of `b' and ` ' on the flow potential, phase transformation, and critical state was also investigated. At phase transformation, ` ' plays a more dominant role in determining the flow potential than `b'. The shape and size of the critical state locus remained the same immaterial of the drainage conditions.
Next, small amounts of cohesion (using ordinary Portland cement) was added to this sand ensemble to study the mechanical behaviour of weakly cemented sands. The peak in the stress strain curve was used to signal the breakdown of cohesion further leading to a complete destructuring of the sand at the critical state. The response of the cemented sand changes from brittle to ductile with increase in confining pressure, while reverses with increase in density and `b'. Stress-dilatancy response for the weakly cemented materials shows the non coincidence of peak stress ratio and maximum value of dilation unlike purely frictional materials. This mismatch in peak stress ratio and maximum dilation diminishes with increase in confining pressure. The peak stress (cemented structured sand) locus and the critical state (destructured) locus were constructed on the octahedral plane from these HCT tests. The critical state locus of the cemented sand when it is completely destructured almost coincides with the critical state locus of the clean sand. Using this experimental data set, some important stress-dilatancy relationships (like Zhang and Salgado) and failure criteria (Lade's isotropic single hardening failure criteria and SMP failure criteria) were benchmarked and their prediction capabilities of such models were discussed in detail.
The effect of particle morphology was also investigated in this testing programme. Rounded glass ballotini and angular quartzitic sand which occupy two extreme shapes were selected, and a series of HCT tests at different `b' values were con-ducted. A larger sized CS locus was obtained for angular particles and it encompassed the critical state locus of the spherical glass ballotini. Spherical particles exhibit a predominantly dilative behaviour, however present a lower strength at the critical state. The mobilization of strength as a result of rearrangement of angular particles and the consequent interlocking is higher. Even with contractive behaviour which is reflected in the higher values of critical state friction angle and the larger size of the yield locus for sand.
Finally, a series of unconfined compression tests were performed to understand if there exists a scale separation in cohesive frictional materials. Specimens were reconstituted to a range of sizes while maintaining a constant aspect ratio and density. As the specimen size increased, the peak strength also increases, counter to an idea of a generalized continuum for all model systems. The observed secondary length scale (in addition to the continuum length scale) is obverse to the one observed in quasi-brittle materials such as concrete, rock. In order to ascertain the reason behind this phenomenon, a series of tomography studies were carried out on these contact-bound ensembles. The presence of cohesion between the grains brings about an \entanglement" between the grains, which contributes to increase in strength, with increase in the size of the sample. This in e ect bringing forth a second length scale that controls the behaviour of these cohesive frictional granular materials.
This experimental data set provides quantification of various aspects of the me-chanical response of both cemented and uncemented granular materials under myriad stress conditions. This data set is also extremely useful in developing and bench-marking constitutive models and simulations.
|
40 |
Hydraulics of paddle wheels in high-rate algae pondsSacha Sethaputra. January 1981 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Civil Engineering, 1981 / Includes bibliographical references. / by Sacha Sethaputra. / M.S. / M.S. Massachusetts Institute of Technology, Department of Civil Engineering
|
Page generated in 0.1246 seconds