• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2399
  • 779
  • 310
  • 248
  • 172
  • 83
  • 64
  • 52
  • 48
  • 46
  • 28
  • 27
  • 23
  • 22
  • 7
  • Tagged with
  • 5640
  • 1311
  • 1251
  • 922
  • 729
  • 521
  • 520
  • 496
  • 461
  • 438
  • 420
  • 415
  • 369
  • 361
  • 328
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Numerical model of Ni-infiltrated porous anode solid oxide fuel cells

HARDJO, ERIC FREDDY 14 June 2012 (has links)
A numerical model for solid oxide fuel cells with Ni-infiltrated porous anode has been described. The novel contribution of the work is the development of a semi-continuous film model to describe the infiltrated Ni-phase. This model relates experimentally controllable parameters, namely, Ni- loading, porosity and pore size to the effective electronic conductivity of the Ni-phase and the number of active reaction sites or the triple phase boundary (TPB). The semi-continuous film model was incorporated in a two-dimensional (2D) SOFC model. The 2D model considers the coupled gas-phase transport, charge transport and electrochemical kinetics to directly examine the effect of Ni loading and porosity on the electrochemical performance of Ni-infiltrated SOFC anodes. From the semi-continuous film model, an optimal Ni loading that corresponds to a maximum in TPB length was identified. Comparison of effective electronic conductivity and TPB length for a Ni-infiltrated anode with those for a composite Ni-YSZ anode suggests that an infiltrated Ni anode with adequate electrical conductivity and sufficiently high TPB length can be fabricated even at a very low Ni loading. Comparison of various porous anodes with varying Ni loading, it was determined that maximum electrochemical performance does indeed correspond to anode with maximum TPB length. It was also determined that an infiltrated anode will have higher performance capabilities when compared to the conventional composite electrodes. However, degradation of performance may result due to degradation of connectivity in the infiltrated Ni. The methodology to model the latter effect was also proposed. / Thesis (Master, Chemical Engineering) -- Queen's University, 2012-06-13 13:09:49.182
132

The development of inorganic and organic/inorganic membranes for DMFC application.

Mokrani, Touhami January 2004 (has links)
A fuel cell is an energy device that converts chemical energy to electrical energy. Low temperature fuel cells, namely the hydrogen fuel cell and the direct methanol fuel cell are preferred amongst other fuel cell types for stationary and vehicular applications, due to their small size and their low operating temperature. The direct methanol fuel cell has several advantages over the hydrogen fuel cell including ease of transport and storage since methanol is a liquid. Since methanol is used directly in the cell there is no need for a reforming process, which results in a less complicated system. However, direct methanol fuel cell are in their infancy and many problems need to be overcome before reaching commercialization. The direct methanol fuel cell has several disadvantages, namely, the sluggish methanol oxidation reaction, the high cost of state-of-the-art proton exchange membranes, the high methanol permeability from anode to cathode and the dependence on the conductivity on membrane water content, which limits their use to temperatures below the boiling point of water, while the need is to work at high temperatures. Attempts to overcome the disadvantages of the state-of-the-art membrane were made in this study, including the development on novel proton exchange membranes and also the modification of existing state-of-the-art membranes.
133

An Experimental Test Facility for Studying the Effects of Turbulence on the Evaporation of Fuel Droplets at Elevated Pressure and Temperature Conditions

Fabbro, Sean 13 April 2012 (has links)
A test rig was developed in an effort to perform droplet evaporation and combustion experiments at high levels of turbulent intensity under elevated pressures and temperatures. The detailed explanation of the design and operation of the various components that are part of the testing apparatus is presented. Once the apparatus was completed, 2D Laser Doppler Velocimetry measurements were used to fully characterize the turbulent field inside the chamber. The results showed that the test rig was capable of producing homogenous isotropic turbulence with a 40 mm central region of the chamber at turbulent kinetic energy levels of up to 5.0 m/s. From the characterization data a correlation of turbulent kinetic energy vs fan speed was produced. The produced correlation is valid at standard conditions as well as elevated pressures and temperatures. After determination of the turbulent field, droplet evaporation experiments were performed, first at standard conditions and then elevated temperature and pressure. The results show that turbulence continued to enhance droplet evaporation at elevated temperature and pressures, 298-348°K and 1-21 bar respectively. Broad conclusions are then drawn from the work performed in the study and recommendations are made for future work and improvements to the test apparatus.
134

A Ceria-Based Solid Oxide Fuel Cell Utilizing H [subscript 2] S as the Fuel

Peterson, David Ross 12 1900 (has links)
No description available.
135

Electrochemical CO[subscript]2 concentration in a molten carbonate driven cell

Kang, Mannsik Paul 12 1900 (has links)
No description available.
136

A solid oxide fuel cell using hydrogen sulfide with ceria-based electrolytes

Kirk, Thomas Jackson 05 1900 (has links)
No description available.
137

Immobilized yeast reactor for ethanol production

Anselme, Marc Joseph 08 1900 (has links)
No description available.
138

The measurement of the diffusion coefficients of ethanol in organic solvents

Krosnowski, Lucia Helen 08 1900 (has links)
No description available.
139

Electrochemical purification of oxygen

Buehler, Kurt David 05 1900 (has links)
No description available.
140

The role of plutonium-238 in nuclear fuel cycles

Massey, John Victor 05 1900 (has links)
No description available.

Page generated in 0.0555 seconds