• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2420
  • 779
  • 310
  • 248
  • 172
  • 84
  • 64
  • 52
  • 48
  • 46
  • 28
  • 27
  • 23
  • 22
  • 8
  • Tagged with
  • 5668
  • 1315
  • 1255
  • 929
  • 733
  • 522
  • 521
  • 496
  • 465
  • 441
  • 421
  • 418
  • 369
  • 365
  • 330
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Nuclear Fuel Cycle Modeling Approaches For Recycling And Transmutation Of Spent Nuclear Fuel

Yee, Shannon K. 08 September 2008 (has links)
No description available.
532

A practical study in the use of automotive waste oil as a fuel for firing ceramics

Fromme, Robert Alexander January 2010 (has links)
Digitized by Kansas Correctional Industries
533

The gasification of biomass in a fluidized bed reactor

Hoveland, Deborah A. January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
534

Construction and demonstration of a reactor system for testing methanol synthesis catalysts

Little, Douglas James January 2011 (has links)
Digitized by Kansas Correctional Industries
535

Reactivity determinations in the K.S.U. graphite subcritical assembly

Eckoff, N. Dean(Norman),1938- January 1963 (has links)
Call number: LD2668 .T4 1963 W25 / Master of Science
536

Uncollided flux from finite right-circular cylinder viewed endwise

Rash, Larry A. January 1962 (has links)
LD2668 .T4 1962 R37
537

A velocity transfer function analysis of forced convention heat transfer

Mahaffey, Michael Kent. January 1966 (has links)
Call number: LD2668 .T4 1966 M215 / Master of Science
538

Separation processes for high purity ethanol production

Ngema, Peterson Thokozani January 2010 (has links)
Research project submitted in fulfillment of the academic requirements for the Masters Degree in Technology: Chemical Engineering, Durban University of Technology, 2010. / Globally there is renewed interest in the production of alternate fuels in the form of bioethanol and biodiesel. This is mainly due to the realization that crude oil stocks are limited hence the swing towards more renewable sources of energy. Bioethanol and biodiesel have received increasing attention as excellent alternative fuels and have virtually limitless potential for growth. One of the key processing challenges in the manufacturing of biofuels is the production of high purity products. As bioethanol is the part of biofuels, the main challenge facing bioethanol production is the separation of high purity ethanol. The separation of ethanol from water is difficult because of the existence of an azeotrope in the mixture. However, the separation of the ethanol/water azeotropic system could be achieved by the addition of a suitable solvent, which influences the activity coefficient, relative volatility, flux and the separation factor or by physical separation based on molecular size. In this study, two methods of high purity ethanol separation are investigated: extractive distillation and pervaporation. The objective of this project was to optimize and compare the performance of pervaporation and extraction distillation in order to produce high purity ethanol. The scopes of the investigation include:  Study of effect of various parameters (i) operating pressure, (ii) operating temperature, and (iii) feed composition on the separation of ethanol-water system using pervaporation.  Study the effect of using salt as a separating agent and the operating pressure in the extractive distillation process. The pervaporation unit using a composite flat sheet membrane (hydrophilic membrane) produced a high purity ethanol, and also achieved an increase in water flux with increasing pressure and feed temperature. The pervaporation unit facilitated separation beyond the ethanol – water system azeotropic point. It is concluded that varying the feed temperature and the operating pressure, the performance of the pervaporation membrane can be optimised. v The extractive distillation study using salt as an extractive agent was performed using the low pressure vapour-liquid equilibrium (LPVLE) still, which was developed by (Raal and Mühlbauer, 1998) and later modified by (Joseph et al. 2001). The VLE study indicated an increase in relative volatility with increase in salt concentration and increase in pressure operating pressure. Salt concentration at 0.2 g/ml and 0.3 g/ml showed complete elimination of the azeotrope in ethanol-water system. The experimental VLE data were regressed using the combined method and Gibbs excess energy models, particular Wilson and NRTL. Both models have shown the best fit for the ethanol/water system with average absolute deviation (AAD) below 0.005. The VLE data were subjected to consistency test and according to the Point test, were of high consistency with average absolute deviations between experimental and calculated vapour composition below 0.005. Both extractive distillation using salt as an extractive agent and pervaporation are potential technologies that could be utilized for the production of high purity ethanol in boiethanol-production.
539

Parametric analysis of a solid polymer fuel cell using current distribution mapping

Potter, Marcus Jason January 1999 (has links)
During operation of the solid polymer fuel cell (SPFC). its performance is limited by the concentrations of hydrogen and oxygen at the reaction interfaces and in most SPFC designs, the hydration state of the membrane. Since in general, the concentrations of water and the gaseous species vary along the flow channel, the performance is also likely to change along the flow channel. In order to study this phenomenon, a measurement system was developed to map the current distribution across the electrode surface. The current distribution has been measured by dividing one of the current collectors into a number of electrically isolated segments. The current flowing through each of the segments was measured while maintaining a constant potential across the surface of the gas diffusion layer. Two separate segmented current collectors were developed. The first was used to measure the current distribution for an 80 cm2 single cell, and the second was used to investigate the local current densities around a single flow channel. The effects of the feed gas humidities on the spatial current density in the 80 cm2 fuel cell were investigated for two different membrane-electrode configurations. With Nafion 117 as electrolyte and at a cell temperature of 80°C. the membrane was found to dehydrate in the initial portion of the gas flow channel when the relative humidity of both the hydrogen and oxygen feed gases was less than 50%. With a Gore-Select membrane electrode assembly (hydrogen and air. temperature- 60°C). the membrane was sufficiently hydrated at all feed gas humidification conditions. The performance of the cell was found to deteriorate at higher feed gas humidities as a result of the lower partial pressures of the reactant gases. Measurements of the effects of gas pressures, stoichiometries and humidities on the length-wise and width-wise perfonnance around a single flow channel (Gore-Select membrane electrode assembly) are discussed in relation to a gas flow model.
540

Modelling of high temperature fuel cells : the thermal, chemical, electrochemical and fluidmechanical behaviour of solid oxide fuel cells operating with internal reforming of methane

Gubner, Andreas January 1996 (has links)
Since only little is known in the field of Solid Oxide Fuel Cell (SOFC) operation about internal reforming of methane at present, the aim of this thesis study is to conduct a detailed investigation delivering the basis for further experimental and theoretical work. Also information is required if the concept of internal reforming has technical development potential. The thesis is arranged into two major parts being a thermodynamic investigation and an application of a suitable kinetic model. Pure methane tends to decompose at the high operation temperatures of the SOFC (about 950°C) thus forming solid carbon. Therefore it is necessary to include a fuel preparation process delivering H2 and CO that can be utilized by the SOFC. The fuel processing can either be carried out by steam reforming or partial oxidation. It is shown by a thermodynamic investigation that fuel processing by partial oxidation yields a fuel gas of inferior quality than fuel processing by steam reforming. The kinetic part contains the application of a model describing the chemical and electrochemical conversion occuring in the SOFC as detailed as possible at present. This model is used to investigate the thermal behaviour of an SOFC process referring to technical operation parameters. It is shown that internal reforming has technical development potential although a lot of care must be paid to the heat management. Particular operation conditions might exist where the highly endothermic steam reforming process could cause a breakdown of the complete fuel cell process due to its enormous local cooling effect.

Page generated in 0.0511 seconds