Spelling suggestions: "subject:"full cell."" "subject:"fue cell.""
531 |
Investigation of Hygro-Thermal Strain in Polymer Electrolyte Membranes Using Optical Coherence ElastographyKeller, Victor 12 August 2014 (has links)
The work present in this thesis report introduces a novel non-destructive technique for experimentally measuring through thickness hygro-thermal strain of Nafion membranes though digital image correlation. An Optical Coherence Tomography (OCT) system was used to acquire images of a Nafion-TiO2 (titanium dioxide powder) composite membranes in a fuel cell like device. The proposed technique, commonly known as optical coherence elastography (OCE) makes use of the normalized correlation algorithm to calculate strain between two successive scans of different relative humidity step values. Different normalized correlation parameters were compared to measured results of PDMS-TiO2 phantoms in order to analyze accuracy. The effect of TiO2 on Nafion membranbes mechanical properties was further analysed by comparing the swelling behaviour of membranes with different concentrations. It has been found that Nafion undergoes approximately 25 – 30% more strain on the land section than on the channel section, regardless gas diffusion electrode (GDE) layer presence. Furthermore, it was shown that the overall strain on the material decrease by approximately 10% when GDE layers are present. Overall this work demonstrated how OCE is a viable technique for measuring through thickness strain distribution in Nafion composite membranes and has the potential to be implemented for non-destructive in situ measurements. / Graduate / 0548 / kellerv@uvic.ca
|
532 |
Current and Temperature Distributions in Proton Exchange Membrane Fuel CellAlaefour, Ibrahim January 2012 (has links)
Proton exchange membrane fuel cell (PEMFC) is a potential alternative energy conversion device for stationary and automotive applications. Wide commercialization of PEMFC depends on progress that can be achieved to enhance its reliability and durability along with cost reduction. It is desirable to operate the PEMFC at uniform local current density and temperature distributions over the surface of the membrane electrode assembly (MEA). Non-uniform distributions of both current and temperature over the MEA could result in poor reactant and catalyst utilization as well as overall cell performance degradation. Local current distribution in the PEMFC electrodes are closely related to operating conditions, but it is also affected by the organization of the reactant flow arrangements in PEMFCs. Reactant depletion and water formation along the flow channel leads to current variation from the channel inlet to the exit, which leads to non-uniformity of local electrochemical reaction activity, and degradation of the cell performance. Flow arrangements between the anode and cathode streams, such as co-, counter- and cross- flow can exacerbate the effect of the non-uniformity considerably, producing complex current distribution patterns over the electrode surfaces. Thus, understanding of the local current density and its spatial characteristics, as well as the temperature distributions under different physical and operating conditions, is crucially important in order to develop optimum design and operational strategies. Despite the importance of the influence of the flow arrangement on the local current and temperature distributions under various operating conditions, few systematic studies have been conducted experimentally to investigate this effect.
In this research, an experimental setup with special PEMFC test cells are designed and fabricated in-house, in order to conduct in-situ mapping of the local current and temperature distributions over the electrode surfaces. A segmented flow field plate and the printed circuit board (PCB) technique is used to measure the current distribution in a single PEMFC. In situ, nondestructive temperature measurements are conducted using thermocouples to determine the actual temperature distribution. Experimental studies have been conducted to investigate the effect of different flow arrangements between the anode and cathode (co-, counter-, and cross- flow) on the local current density distribution over the MEA surface. Furthermore, local current distribution has been characterized for PEMFCs under various operating conditions such as reactant stoichiometry ratios, reactant backpressure, cell temperature, cell potentials, and relative humidity for each one of the reactant flow arrangements. The dynamic characteristics of the local current in PEMFC under different operating conditions also have been studied. Temperature distributions along the parallel and serpentine flow channels in PEMFs under various operating conditions are also investigated. All independent tests are conducted to identify and optimize the key design and operational parameters for both local current and temperature distributions.
It has been found that the local current density distribution is strongly affected by the flow arrangement between the anode and cathode streams and the key operating conditions. It has also been observed that the counter-flow arrangement generates the most uniform distribution for the current density, whereas the co-flow arrangement results in a considerable variation in the current density from the reactant gas stream inlet to the exit. Low stoichiometry ratio of hydrogen at the anode side has a predominant effect on the current distribution and cell performance. Further, it has been found that the dynamic characteristics and the degree of fluctuation of local current density inside PEMFC are strongly influenced by the crucial operating conditions. In-situ, nondestructive temperature measurements indicate that the temperature distribution inside the PEMFC is strongly sensitive to the cell’s current density. The temperature distribution inside the PEMFC seems to be virtually uniform at low current density, while the temperature variation increases up to 2 oC at the high current density. Finally, the present work contribution related to the local current and temperature distributions is required to understand the effect of each individual or even several operating parameters combined together on the local current and temperature distributions. This will help to develop an optimum design, which leads to enhancing the reliability and durability in operational PEMFCs.
|
533 |
Measurement and Characterization of Heat and Mass Diffusion in PEMFC Porous MediaUnsworth, Grant January 2012 (has links)
A single polymer electrolyte membrane fuel cell (PEMFC) is comprised of several sub-millimetre thick layers of varying porosity sandwiched together. The thickness of each layer, which typically ranges from 10 to 200μm, is kept small in order to minimize the transport resistance of heat, mass, electrons, and protons, that limit reaction rate. However, the thickness of these materials presents a significant challenge to engineers characterizing the transport properties through them, which is of considerable importance to the development and optimization of fuel cells. The objective of this research is to address the challenges associated with measuring the heat conduction and gas diffusion transport properties of thin porous media used in PEMFCs. An improvement in the accuracy of the guarded heat flow technique for measuring thermal conductivity and the modified Loschmidt Cell technique for measuring gas diffusivity are presented for porous media with a sub-millimetre thickness. The improvement in accuracy is achieved by analyzing parameters in each apparatus that are sensitive to measurement error and have the largest contribution to measurement uncertainty, and then developing ways to minimize the error. The experimental apparatuses are used to investigate the transport properties of the gas diffusion layer (GDL) and the microporous layer (MPL), while the methods would also be useful in the study of the catalyst layer (CL).
Gas diffusion through porous media is critical for the high current density operation of a PEMFC, where the electrochemical reaction becomes rate-limited by the diffusive flux of reactants reaching reaction sites. However, geometric models that predict diffusivity of the GDL have been identified as inaccurate in current literature. Experimental results give a better estimate of diffusivity, but published works to date have been limited by high measurement uncertainty. In this thesis, the effective diffusivity of various GDLs are measured using a modified Loschmidt cell and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for predicting diffusivity as a function of porosity in the through-plane direction of a GDL.
The thermal conductivity and contact resistance of porous media are important for accurate thermal analysis of a fuel cell, especially at high current densities where the heat flux becomes large. In this thesis, the effective through-plane thermal conductivity and contact resistance of the GDL and MPL are measured. GDL samples with and without a MPL and coated with 30%-wt. PTFE are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15bar at 0.30W/m°K and 55μm, respectively. The thermal conductivity of the GDL substrate containing 30%−wt. PTFE varied from 0.30 to 0.56W/m°K as compression was increased from 4 to 15bar. As a result, the GDL contain- ing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL while minimizing its thickness.
|
534 |
Surface Wettability Impact on Water Management in PEM Fuel CellAl Shakhshir, Saher January 2012 (has links)
Excessive water formation inside the polymer electrolyte membrane (PEM) fuel cell’s structures leads to the flooding of the cathode gas diffusion layer (GDL) and cathode gas flow channels. This results in a negative impact on water management and the overall cell performance. Liquid water generated in the cathode catalyst layer and the water moved from anode to cathode side due to electro-osmotic drag transport through the GDL to reach the gas flow field channels, where it is removed by air cathode gas stream. Due to high and uniform capillary force distribution effect of the pores through the GDL plane and surface tension between the water droplets and gas flow field channels surfaces, liquid water tends to block/fill the pores of the GDL and stick to the surface of the GDL and gas flow channels. Therefore, it is difficult to remove the trapped water in GDL structure which can lead to flood of the PEM fuel cell. The GDL surfaces are commonly treated uniformly with a hydrophobic material in order to overcome the flooding phenomena inside PEM fuel cell. Despite the importance impact of the surface wettability of both channel and GDL surface characteristics especially for the cathode side on the water management, few experimental studies have been conducted to investigate the effect of the two-phase flow in cathode gas flow channel and their crucial role. The work presented in this thesis covers contributions that provide insight, not only into the investigation of the effects of hydrophobic cathode GDL and cathode gas flow channels, on water removal, two phase flow inside the channel, and on PEM fuel cell performance, but also the superhydrophobic and superhydrophilic GDLs and gas flow channels effects. Further, the effects of a novel GDL designs with sandwich and gradient wettability with driving capillary force through GDL plane have been investigated. Two-phase flow especially in the cathode gas flow field channels of PEM fuel cell has a crucial role on water removal. Hence, in this research, ex-situ investigations of the effects of channels with different surface wettability; superhydrophobic, hydrophobic, slightly hydrophobic, and superhydrophilic on the two-phase flow characteristics have been tested and visualized at room temperature. Pressure drop measurements and two-phase flow visualization have been carried out using high speed camera. The effect of the various coating materials on graphite and GDL surface morphology, roughness, static contact angle (θ), and sliding contact angle (α) have been investigated using scanning electron microscopy (SEM), Profilometry, and sessile drop technique, respectively. It has been observed that the two-phase flow resistance is considerably affected by surface wettability of the channels. Further, the overall cell performance can be improved by superhydrophobic gas flow channels mainly at high current density over slightly hydrophobic and superhydrophilic cases tested. In addition, sandwich wettability GDL has been coated with a silica particle/ Polydimethylsiloxane (PDMS) composite. The porometric characteristics have been studied using, method of standard porosimetry (MSP). It has been found that sandwich wettability GDL has superhydrophobic surfaces with (θ = 162±2°), (α = 5±1°), and the internal pores are hydrophilic, while the mean pore radius is 7.1μm. This shows a low resistance to gas transport. On the other hand, performance testing indicates that (PEM) fuel cell equipped with sandwich wettability GDL results in the best performance compared to those with raw (non-coated) (slightly hydrophobic), PTFE coated (commercial with micro-porous layer (MPL)) (superhydrophobic), and silica coated (superhydrophilic) GDL. The wettability gradient has been introduced through plane of the one side hydrophobic GDL by coating one side of non-coated GDL with 15 wt. % of PTFE solution; however, the other side remains uncoated. The effects of wettability gradient on the water removal rate, droplet dynamics, and PEM fuel cell performance have been covered in this thesis. Water removal rate is determined using a 20 ml syringe barrel, wherein a 13 mm diameter GDL token is fixed on the barrel opening. The droplets penetrating through the GDL are visualized via a high speed camera to study the droplets’ dynamic characteristics. The GDL wettability gradient has a significant impact on water removal rate, droplets’ dynamic characteristics, and consequently enhances the overall PEM fuel cell performance.
|
535 |
Investigations into the interactions between sulfur and anodes for solid oxide fuel cellsCheng, Zhe 05 March 2008 (has links)
Solid oxide fuel cells (SOFCs) are electrochemical devices based on solid oxide electrolytes that convert chemical energy in fuels directly into electricity via electrode reactions. SOFCs have the advantages of high energy efficiency and low emissions and hold the potential to be the power of the future, especially for small power generation systems (1-10 kW). Another unique advantage of SOFCs is the potential to directly utilize hydrocarbon fuels such as natural gas through internal reforming. However, all hydrocarbon fuels contain some sulfur compounds, which transform to hydrogen sulfide (H2S) in the reforming process and dramatically degrade the performance of the existing SOFCs.
In this study, the interactions between sulfur contaminant (in the form of H2S) and the anodes for SOFCs were systematically investigated in order to gain a fundamental understanding of the mechanism of sulfur poisoning and ultimately to achieve rational design of sulfur-tolerant anodes. The sulfur poisoning behavior of the state-of-the-art Ni-YSZ cermet anodes was characterized using electrochemical measurements performed on button cells (of different structures) under various operating conditions, including H2S concentration, temperature, cell current density/terminal voltage, and cell structure. Also, the mechanisms of interactions between sulfur and the Ni-YSZ cermet anode were investigated using both ex situ and in situ characterization techniques such as Raman spectroscopy. Results suggest that the sulfur poisoning of Ni-YSZ cermet anodes at high temperatures in fuels with ppm-level H2S is due not to the formation of multi-layer conventional nickel sulfides but to the adsorption of sulfur on the nickel surface. In addition, new sulfur-tolerant anode materials were explored in this study. Thermodynamic principles were applied to predict the stability of candidate sulfur-tolerant anode materials and explain complex phenomena concerning the reactivity of candidate materials with hydrogen sulfide. The enhanced sulfur tolerance for some candidate anode materials such as (Gd2Ti1.4Mo0.6O7) is attributed to the transition of the surface from metal oxides to sulfides (i.e., MoS2), which enhances the catalytic activity and increases the number of reaction sites.
|
536 |
Modeling, design and energy management of fuel cell systems for aircraftBradley, Thomas Heenan 07 August 2008 (has links)
Fuel cell powered aircraft have been of long term interest to the aviation community because of their potential for improved performance and environmental compatibility. Only recently have improvements in the technological readiness of fuel cell powerplants enabled the first aviation applications of fuel cell technology. Based on the results of conceptual design studies and a few technology demonstration projects, there has emerged a widespread understanding of the importance of fuel cell powerplants for near-term and future aviation applications. Despite this, many aspects of the performance, design and construction of robust and optimized fuel cell powered aircraft have not been fully explored.
This goal of this research then is to develop an improved understanding of the performance, design characteristics, design tradeoffs and viability of fuel cell powerplants for aviation applications. To accomplish these goals, new modeling, design, and experimental tools are developed, validated and applied to the design of fuel cell powered unmanned aerial vehicles.
First, a general sub-system model of fuel cell powerplant performance, mass and geometry is derived from experimental and theoretical investigations of a fuel cell powerplant that is developed in hardware. These validated fuel cell subsystem models are then incorporated into a computer-based, application-integrated, parametric, and optimizeable design environment that allows for the concurrent design of the aircraft and fuel cell powerplant. These tools and methods are then applied to the analysis and design of fuel cell powered aircraft in a series of case studies and design experiments.
Based on the results of the integrated fuel cell system and aircraft analyses, we gain a new understanding of the interaction between powerplant and application for fuel cell aircraft. Specifically, the system-level design criteria of fuel cell powerplants for aircraft can be derived. Optimal sub-system configurations of the fuel cell powerplant specific to the aircraft application are determined. Finally, optimal energy management strategies and flight paths for fuel cell and battery hybridized fuel cell aircraft are derived.
The results of a series of design studies are validated using hardware in the loop testing of fuel cell propulsion systems and field testing of a series of fuel cell powered demonstrator aircraft.
|
537 |
The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applicationsPrakash, Shruti 12 March 2009 (has links)
In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power applications. The challenges associated with low power and small DMFCs were investigated and the performance of commercial Li-ion batteries was evaluated. At low current demand (or low power), methanol leakage through the proton exchange membrane (PEM) reduces the efficiency of a DMFC. Consequently, a proton conducting methanol barrier layer made from phospho-silica glass(PSG) was developed. At optimized deposition conditions, the PSG layers had low methanol permeability and moderate conductivity. The accumulation of CO2 inside the fuel tank was addressed by fabricating CO2 vents. Poly (dimethyl siloxane) (PDMS) and poly (1-trimethyl silyl propyne) (PTMSP) base polymers were used as the backbone material for these vents. The selectivity of CO2 transport through the vent was further enhanced by using additives like 1, 6-divinylperfluorohexane. Finally, the effects of self-discharge and voltage loss were evaluated for Panasonic coin cells and thin film LiPON cells. It was observed that the thin film battery outperformed the others in terms of low energy loss. Nonetheless, the performance of small Panasonic coin cells with vanadium oxide cathode was comparable at low discharge rates of less than 0.01% depth of discharge. Lastly, it was also observed that the batteries have stable cycles at low discharge rates.
|
538 |
Tailoring Carbon Materials as Fuels for the Direct Carbon Fuel CellsXiang Li Unknown Date (has links)
As a novel high temperature fuel cell, the direct carbon fuel cell (DCFC) is drawing ever-increasing attention due to its significant high conversion efficiency, diversified fuel resources and low pollution compared with conventional coal-fired power plants. Despite the advantages of the DCFC technology, there are a number of fundamental and technological challenges which need to be overcome for its further development and commercialization. One of the major hurdles in current study of the DCFC is that the efficacy of carbon fuels is still unclear. Meanwhile, the effects of impurities in the carbon fuels on the performance and lifetime of the DCFC are still up for debate. Furthermore, the molecular-level study on the mechanism of electrochemical oxidation of carbon fuels in the DCFC is limited by the lack of techniques to detect the reaction intermediates at high temperature. Finally, how to scale up the DCFC system with suitable hardware materials and optimum structural designs needs further investigation. Based on successfully developing a DCFC system with a stirring molten carbonate electrolyte, various commercial and self-made carbon fuels including activated carbons, carbon blacks, graphitic carbons, coals and carbon nanofibers (CNFs) are systematically characterized and evaluated in this thesis. It is found that the nature of carbon fuels plays an important role in the anodic performance of the DCFC. A higher surface area and a smaller particle size of carbon fuel can effectively improve its electrochemical reactivity by increasing the interaction between the carbon particles and the molten carbonate electrolyte. On the contrary, a higher graphitic degree of carbon fuel results in a lower electrochemical reactivity in the DCFC due to the less reactive sites such as edges and defects on carbon surface. Furthermore, the order of the electrochemical reactivities for carbon fuels is in good agreement with the concentration of oxygen-containing functional groups on their surface, which is believed to play a key role in the electrochemical oxidation of carbons in the DCFC. In order to better understand the relationship between the surface chemistry of carbons and their electrochemical performance in the DCFC, various pre-treatment techniques including acid washing, air-plasma treatment, air oxidation, pyrolysis and the pre-electrochemical oxidation (in molten alkali carbonate electrolytes) have been conducted on the carbon fuels. It is shown that both the HNO3 washing and pre-electrochemical oxidation are much more effective to improve the electrochemical reactivities of carbon fuels compared to other pre-treatment techniques, which is attributed to the significant changes in the microstructure of carbon fuels and more surface oxygen functional groups produced during the pre-treatments. In contrast, the pyrolysis treatment results in a sharp decrease of electrochemical reactivity of carbon fuels due to the decreases in oxygen-containing surface groups and surface areas, and the increase of their graphitic degrees. For the sake of the optimum operational conditions for the DCFC system, the influences of stirring rates, the carbon fuel loadings and fuel cell temperatures on the anodic performance of the DCFC are investigated. It has been shown that the carbon discharge rates can be significantly boosted by effective stirring and high carbon fuel concentrations due to an improved mass transport. A higher operation temperature can also increase the current density and open circuit voltage of the DCFC. However, the complete electrochemical oxidation of carbon into CO2 can be only achieved at the low operation temperature of 600-700 ºC, while the partially electrochemical oxidation of carbon into CO occurs at 800 ºC, which will significantly decrease the carbon efficiency to less than 10% at 800 ºC. In the study of self-made CNFs as fuels for the DCFC, both microstructure and electrochemical reactivity of CNFs are highly dependent on their synthesis conditions. Compared with Ni-Al2O3 catalyst, the coprecipitated Ni-Cu-Al2O3 catalyst produced more CNFs with higher electrochemically reactivity. Over the same catalyst, the CNFs synthesized at lower temperature typically have higher surface areas, more surface oxygen functional groups and lower graphitic degrees, thereby leading to a higher electrochemical reactivity in the DCFC tests. In an effort to study the catalytic effects of mineral impurities on the electrochemical performance of the DCFC, Al2O3 and SiO2 present passivation effects in the anodic reaction. In contrast, the CaO, MgO and Fe2O3 show catalytic effects in the carbon electrochemical oxidation, which is demonstrated by the increases of current densities at low over-potentials in the polarization curves.
|
539 |
Hydrogen applications for Lambert - St. Louis International AirportThomas, Mathew, January 2009 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2009. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed January 22, 2009) Includes bibliographical references (p. 53-55).
|
540 |
Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar CollectorsReal, Daniel Jordan January 2015 (has links)
<p>Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.</p> / Dissertation
|
Page generated in 0.0592 seconds