• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of the Effects of Microporous Layer Characteristics and Assembly Parameters on the Performance and Durability of a Planar PEM Fuel Cell

Burand, Patrick Hiroshi 20 January 2010 (has links)
In recent years a significant portion of proton exchange membrane fuel cell (PEMFC) work has been focused on understanding and optimizing the functions of the microporous layer (MPL). Researchers have found that including this layer, composed of carbon black and TeflonTM (PTFE), between the gas diffusion layer (GDL) and catalyst layer (CL) of PEMFCs improves performance. The major benefit of the MPL in conventional fuel cells is that it improves water management and reduces contact resistances between cell layers. Although the functions of the MPL in conventional PEMFCs are well understood, the essential functions and optimal formulation of the layer in planar PEMFCs which operate without stack compression, are for the most part unknown. This work determines the essential functions and optimal composition, loading and sintering pressure of the MPL in a planar fuel cell design called a Ribbon Fuel Cell. Adhesion as well as performance data were gathered to determine the essential functions and formulation of the MPL which leads to high performance and durability in Ribbon Fuel Cells. Statistical models were created based on performance data of cells constructed with various MPLs; and a MPL composed of 45 wt% PTFE, loaded at 3.5 mg/cm° and sintered between 20 and 40 psi was found to exhibit optimal performance and durability. The reason why such a high PTFE content yields optimal results is because it strengthens the MPL, allowing it to successfully join various cell layers together, a function that is essential in Ribbon Cells which operate without external stack compression. / Master of Science
2

Measurement and Characterization of Heat and Mass Diffusion in PEMFC Porous Media

Unsworth, Grant January 2012 (has links)
A single polymer electrolyte membrane fuel cell (PEMFC) is comprised of several sub-millimetre thick layers of varying porosity sandwiched together. The thickness of each layer, which typically ranges from 10 to 200μm, is kept small in order to minimize the transport resistance of heat, mass, electrons, and protons, that limit reaction rate. However, the thickness of these materials presents a significant challenge to engineers characterizing the transport properties through them, which is of considerable importance to the development and optimization of fuel cells. The objective of this research is to address the challenges associated with measuring the heat conduction and gas diffusion transport properties of thin porous media used in PEMFCs. An improvement in the accuracy of the guarded heat flow technique for measuring thermal conductivity and the modified Loschmidt Cell technique for measuring gas diffusivity are presented for porous media with a sub-millimetre thickness. The improvement in accuracy is achieved by analyzing parameters in each apparatus that are sensitive to measurement error and have the largest contribution to measurement uncertainty, and then developing ways to minimize the error. The experimental apparatuses are used to investigate the transport properties of the gas diffusion layer (GDL) and the microporous layer (MPL), while the methods would also be useful in the study of the catalyst layer (CL). Gas diffusion through porous media is critical for the high current density operation of a PEMFC, where the electrochemical reaction becomes rate-limited by the diffusive flux of reactants reaching reaction sites. However, geometric models that predict diffusivity of the GDL have been identified as inaccurate in current literature. Experimental results give a better estimate of diffusivity, but published works to date have been limited by high measurement uncertainty. In this thesis, the effective diffusivity of various GDLs are measured using a modified Loschmidt cell and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for predicting diffusivity as a function of porosity in the through-plane direction of a GDL. The thermal conductivity and contact resistance of porous media are important for accurate thermal analysis of a fuel cell, especially at high current densities where the heat flux becomes large. In this thesis, the effective through-plane thermal conductivity and contact resistance of the GDL and MPL are measured. GDL samples with and without a MPL and coated with 30%-wt. PTFE are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15bar at 0.30W/m°K and 55μm, respectively. The thermal conductivity of the GDL substrate containing 30%−wt. PTFE varied from 0.30 to 0.56W/m°K as compression was increased from 4 to 15bar. As a result, the GDL contain- ing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL while minimizing its thickness.
3

Measurement and Characterization of Heat and Mass Diffusion in PEMFC Porous Media

Unsworth, Grant January 2012 (has links)
A single polymer electrolyte membrane fuel cell (PEMFC) is comprised of several sub-millimetre thick layers of varying porosity sandwiched together. The thickness of each layer, which typically ranges from 10 to 200μm, is kept small in order to minimize the transport resistance of heat, mass, electrons, and protons, that limit reaction rate. However, the thickness of these materials presents a significant challenge to engineers characterizing the transport properties through them, which is of considerable importance to the development and optimization of fuel cells. The objective of this research is to address the challenges associated with measuring the heat conduction and gas diffusion transport properties of thin porous media used in PEMFCs. An improvement in the accuracy of the guarded heat flow technique for measuring thermal conductivity and the modified Loschmidt Cell technique for measuring gas diffusivity are presented for porous media with a sub-millimetre thickness. The improvement in accuracy is achieved by analyzing parameters in each apparatus that are sensitive to measurement error and have the largest contribution to measurement uncertainty, and then developing ways to minimize the error. The experimental apparatuses are used to investigate the transport properties of the gas diffusion layer (GDL) and the microporous layer (MPL), while the methods would also be useful in the study of the catalyst layer (CL). Gas diffusion through porous media is critical for the high current density operation of a PEMFC, where the electrochemical reaction becomes rate-limited by the diffusive flux of reactants reaching reaction sites. However, geometric models that predict diffusivity of the GDL have been identified as inaccurate in current literature. Experimental results give a better estimate of diffusivity, but published works to date have been limited by high measurement uncertainty. In this thesis, the effective diffusivity of various GDLs are measured using a modified Loschmidt cell and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for predicting diffusivity as a function of porosity in the through-plane direction of a GDL. The thermal conductivity and contact resistance of porous media are important for accurate thermal analysis of a fuel cell, especially at high current densities where the heat flux becomes large. In this thesis, the effective through-plane thermal conductivity and contact resistance of the GDL and MPL are measured. GDL samples with and without a MPL and coated with 30%-wt. PTFE are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15bar at 0.30W/m°K and 55μm, respectively. The thermal conductivity of the GDL substrate containing 30%−wt. PTFE varied from 0.30 to 0.56W/m°K as compression was increased from 4 to 15bar. As a result, the GDL contain- ing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL while minimizing its thickness.
4

A Novel Process for Fabricating Membrane-electrode Assemblies with Low Platinum Loading for Use in Proton Exchange Membrane Fuel Cells

Karimi, Shahram 31 August 2011 (has links)
A novel method based on pulse current electrodeposition (PCE) employing four different waveforms was developed and utilized for fabricating membrane-electrode assemblies (MEAs) with low platinum loading for use in low-temperature proton exchange membrane fuel cells. It was found that both peak deposition current density and duty cycle control the nucleation rate and the growth of platinum crystallites. Based on the combination of parameters used in this study, the optimum conditions for PCE were found to be a peak deposition current density of 400 mA cm-2, a duty cycle of 4%, and a pulse generated and delivered in the microsecond range utilizing a ramp-down waveform. MEAs prepared by PCE using the ramp-down waveform show performance comparable with commercial MEAs that employ ten times the loading of platinum catalyst. The thickness of the pulse electrodeposited catalyst layer is about 5-7 µm, which is ten times thinner than that of commercial state-of-the-art electrodes. MEAs prepared by PCE outperformed commercial MEAs when subjected to a series of steady-state and transient lifetime tests. In steady-state lifetime tests, the average cell voltage over a 3000-h period at a constant current density of 619 mA cm-2 for the in-house and the state-of-the-art MEAs were 564 mV and 505 mV, respectively. In addition, the influence of substrate and carbon powder type, hydrophobic polymer content in the gas diffusion layer, microporous layer loading, and the through-plane gas permeability of different gas diffusion layers on fuel cell performance were investigated and optimized. Finally, two mathematical models based on the microhardness model developed by Molina et al. [J. Molina, B. A. Hoyos, Electrochim. Acta, 54 (2009) 1784-1790] and Milchev [A. Milchev, “Electrocrystallization: Fundamentals of Nucleation And Growth” 2002, Kluwer Academic Publishers, 189-215] were refined and further developed, one based on pure diffusion control and another based on joint diffusion, ohmic and charge transfer control developed by Milchev [A. Milchev, J. Electroanal. Chem., 312 (1991) 267-275 & A. Milchev, Electrochim. Acta, 37 (12) (1992) 2229-2232]. Experimental results validated the above models and a strong correlation between the microhardness and the particle size of the deposited layer was established.
5

A Novel Process for Fabricating Membrane-electrode Assemblies with Low Platinum Loading for Use in Proton Exchange Membrane Fuel Cells

Karimi, Shahram 31 August 2011 (has links)
A novel method based on pulse current electrodeposition (PCE) employing four different waveforms was developed and utilized for fabricating membrane-electrode assemblies (MEAs) with low platinum loading for use in low-temperature proton exchange membrane fuel cells. It was found that both peak deposition current density and duty cycle control the nucleation rate and the growth of platinum crystallites. Based on the combination of parameters used in this study, the optimum conditions for PCE were found to be a peak deposition current density of 400 mA cm-2, a duty cycle of 4%, and a pulse generated and delivered in the microsecond range utilizing a ramp-down waveform. MEAs prepared by PCE using the ramp-down waveform show performance comparable with commercial MEAs that employ ten times the loading of platinum catalyst. The thickness of the pulse electrodeposited catalyst layer is about 5-7 µm, which is ten times thinner than that of commercial state-of-the-art electrodes. MEAs prepared by PCE outperformed commercial MEAs when subjected to a series of steady-state and transient lifetime tests. In steady-state lifetime tests, the average cell voltage over a 3000-h period at a constant current density of 619 mA cm-2 for the in-house and the state-of-the-art MEAs were 564 mV and 505 mV, respectively. In addition, the influence of substrate and carbon powder type, hydrophobic polymer content in the gas diffusion layer, microporous layer loading, and the through-plane gas permeability of different gas diffusion layers on fuel cell performance were investigated and optimized. Finally, two mathematical models based on the microhardness model developed by Molina et al. [J. Molina, B. A. Hoyos, Electrochim. Acta, 54 (2009) 1784-1790] and Milchev [A. Milchev, “Electrocrystallization: Fundamentals of Nucleation And Growth” 2002, Kluwer Academic Publishers, 189-215] were refined and further developed, one based on pure diffusion control and another based on joint diffusion, ohmic and charge transfer control developed by Milchev [A. Milchev, J. Electroanal. Chem., 312 (1991) 267-275 & A. Milchev, Electrochim. Acta, 37 (12) (1992) 2229-2232]. Experimental results validated the above models and a strong correlation between the microhardness and the particle size of the deposited layer was established.
6

Experimental Measurement of Effective Diffusion Coefficient in Gas Diffusion Layer/Microporous Layer in PEM Fuel Cells

Chan, Carl 25 August 2011 (has links)
Accuracy in the effective diffusion coefficient of the gas diffusion layer (GDL)/microporous layer (MPL) is important to accurately predict the mass transport limitations for high current density operation of polymer electrolyte membrane (PEM) fuel cells. All the previous studies regarding mass transport limitations were limited to pure GDLs, and experimental analysis of the impact of the MPL on the overall diffusion in the porous GDL is still lacking. The MPL is known to provide beneficial water management properties at high current operating conditions of PEM fuel cells but its small pore sizes become a resistance in the diffusion path for mass transport to the catalyst layer. A modified Loschmidt cell with an oxygen-nitrogen mixture is used in this work to determine the effect of MPL on the effective diffusion coefficients. It is found that Knudsen effects play a dominant role in the diffusion through the MPL where pore diameters are less than 1 μm. Experimental results show that the effective diffusion coefficient of the MPL is only about 21% that of its GDL substrate and Knudsen diffusion accounts for 80% of the effective diffusion coefficient of the GDL with MPL measured in this study. No existing correlations can correlate the effective diffusion coefficient with significant Knudsen contribution.
7

Experimental Measurement of Effective Diffusion Coefficient in Gas Diffusion Layer/Microporous Layer in PEM Fuel Cells

Chan, Carl 25 August 2011 (has links)
Accuracy in the effective diffusion coefficient of the gas diffusion layer (GDL)/microporous layer (MPL) is important to accurately predict the mass transport limitations for high current density operation of polymer electrolyte membrane (PEM) fuel cells. All the previous studies regarding mass transport limitations were limited to pure GDLs, and experimental analysis of the impact of the MPL on the overall diffusion in the porous GDL is still lacking. The MPL is known to provide beneficial water management properties at high current operating conditions of PEM fuel cells but its small pore sizes become a resistance in the diffusion path for mass transport to the catalyst layer. A modified Loschmidt cell with an oxygen-nitrogen mixture is used in this work to determine the effect of MPL on the effective diffusion coefficients. It is found that Knudsen effects play a dominant role in the diffusion through the MPL where pore diameters are less than 1 μm. Experimental results show that the effective diffusion coefficient of the MPL is only about 21% that of its GDL substrate and Knudsen diffusion accounts for 80% of the effective diffusion coefficient of the GDL with MPL measured in this study. No existing correlations can correlate the effective diffusion coefficient with significant Knudsen contribution.
8

Towards an Understanding of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells

Morgan, Jason 12 December 2016 (has links)
The gas diffusion layer (GDL) is one of the key components in a polymer electrolyte membrane (PEM) fuel cell. It performs several functions including the transport of reactant gases and product water to and from the catalyst layer, conduction of both electrons and heat produced in the catalyst layer, as well as mechanical support for the membrane. The overarching goal of this work is to thoroughly examine the GDL structure and properties for use in PEM fuel cells, and more specifically, to determine how to characterize the GDL experimentally ex-situ, to understand its performance in-situ, and to relate theory to performance through controlled experimentation. Thus, the impact of readily measured effective water vapor diffusivity on the performance of the GDL is investigated and shown to correlate to the wet limiting current density, as a surrogate of the oxygen diffusivity to which it is more directly related. The influence of microporous layer (MPL) design and construction on the fuel cell performance is studied and recommendations are made for optimal MPL designs for different operating conditions. A method for modifying the PTFE (Teflon) distribution within the GDL is proposed and the impact of distribution of PTFE in the GDL on fuel cell performance is studied. A method for characterizing the surface roughness of the GDL is developed and the impact of surface roughness on various ex-situ GDL properties is investigated. Finally, a detailed analysis of the physical structure and permeability of the GDL is provided and a theoretical model is proposed to predict both dry and wet gas flow within a GDL based on mercury intrusion porosimetry and porometry data. It is hoped that this work will contribute to an improved understanding of the functioning and structure of the GDL and hence advance PEM fuel cell technology.

Page generated in 0.1046 seconds