• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 7
  • 5
  • 3
  • Tagged with
  • 38
  • 38
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tracking changes in hydraulic conductivity of soil reclamation covers with the use of air permeability measurements

Rodger, Heather Alecia 28 January 2008
The objective of this project was to design a prototype field air permeameter that can be used to track changes in the hydraulic conductivity within soil covers with time. The evolution of soil structure in reclamation soil covers at the Syncrude Canada Ltd. oilsands mine is currently being studied. The Guelph permeameter is currently used to measure hydraulic conductivity, but gathering the data is a very time consuming task due to the relatively low hydraulic conductivity of the cover materials. The use of a faster, more efficient method would increase the capabilities for tracking changes in hydraulic conductivity of reclamation soil covers with time. <p>Three air permeameter design options were evaluated. One design was chosen and a prototype was built. Preliminary field trials were conducted at the Syncrude Canada Ltd. oilsands mine in August 2005. Air permeability measurements were taken on various soil cover treatments and slope positions. Improvements to the air permeameter were implemented in 2006, and additional data gathered. Guelph permeameter testing was carried out alongside the air permeameter in both field seasons. The air permeameter and Guelph permeameter were also tested under controlled laboratory conditions and compared to standard constant head column tests. <p>Results include correlations of air and water permeability for various materials and soil structures. Using dry uniform sand in a laboratory setting, the full scale air permeameter provided permeability values within 21% of a standard constant head column test. Testing of the air and Guelph permeameters on a cover constructed of peat-mineral mix over tailings sand revealed a difference of approximately one order of magnitude in permeability values. A difference of approximately two orders of magnitude existed between permeability values measured with the air and Guelph permeameters on till/secondary soil covers. <p>Further investigation into the difference between values of permeability measured with both methods is necessary. If successful, the air permeameter could prove to be a viable alternative to the Guelph permeameter for use in long-term monitoring of soil covers used in mine reclamation or waste containment. A more efficient air permeability method would allow a greater number of measurements to be made in a shorter time and could be used to track temporal as well as spatial variability in hydraulic conductivity.
2

Tracking changes in hydraulic conductivity of soil reclamation covers with the use of air permeability measurements

Rodger, Heather Alecia 28 January 2008 (has links)
The objective of this project was to design a prototype field air permeameter that can be used to track changes in the hydraulic conductivity within soil covers with time. The evolution of soil structure in reclamation soil covers at the Syncrude Canada Ltd. oilsands mine is currently being studied. The Guelph permeameter is currently used to measure hydraulic conductivity, but gathering the data is a very time consuming task due to the relatively low hydraulic conductivity of the cover materials. The use of a faster, more efficient method would increase the capabilities for tracking changes in hydraulic conductivity of reclamation soil covers with time. <p>Three air permeameter design options were evaluated. One design was chosen and a prototype was built. Preliminary field trials were conducted at the Syncrude Canada Ltd. oilsands mine in August 2005. Air permeability measurements were taken on various soil cover treatments and slope positions. Improvements to the air permeameter were implemented in 2006, and additional data gathered. Guelph permeameter testing was carried out alongside the air permeameter in both field seasons. The air permeameter and Guelph permeameter were also tested under controlled laboratory conditions and compared to standard constant head column tests. <p>Results include correlations of air and water permeability for various materials and soil structures. Using dry uniform sand in a laboratory setting, the full scale air permeameter provided permeability values within 21% of a standard constant head column test. Testing of the air and Guelph permeameters on a cover constructed of peat-mineral mix over tailings sand revealed a difference of approximately one order of magnitude in permeability values. A difference of approximately two orders of magnitude existed between permeability values measured with the air and Guelph permeameters on till/secondary soil covers. <p>Further investigation into the difference between values of permeability measured with both methods is necessary. If successful, the air permeameter could prove to be a viable alternative to the Guelph permeameter for use in long-term monitoring of soil covers used in mine reclamation or waste containment. A more efficient air permeability method would allow a greater number of measurements to be made in a shorter time and could be used to track temporal as well as spatial variability in hydraulic conductivity.
3

The Effects of Household Fabric Softeners on the Thermal Comfort and Flammability of Cotton and Polyester Fabrics

Guo, Jiangman 22 May 2003 (has links)
This study examined the effects of household fabric softeners on the thermal comfort and flammability of 100% cotton and 100% polyester fabrics after repeated laundering. Two fabric properties related to thermal comfort, water vapor transmission and air permeability, were examined. A 3 X 2 X 3 experimental design (i.e., 18 experimental cells) was developed to conduct the research. Three independent variables were selected: fabric softener treatments (i.e., rinse cycle softener, dryer sheet softener, no softener), fabric types (i.e., 100% cotton, 100% polyester), and number of laundering cycles (i.e., 1, 15, 25 cycles). Three dependent variables were tested: water vapor transmission, air permeability, and flammability. The test fabrics were purchased from Testfabrics, Inc. To examine the influence of the independent variables and their interactions on each dependent variable, two-way or three-way Analysis of Variance (ANOVA) tests were used to analyze the data. Results in this study showed that both the rinse cycle softener and the dryer sheet softener significantly decreased the water vapor transmission of test specimens to a similar degree. The rinse cycle softener decreased the air permeability of test specimens most and was followed by the dryer sheet softener. The rinse cycle softener increased the flammability of both cotton and polyester fabrics, but the dryer sheet softener had no significant effect on the flammability of both fabric types. Statistical analysis also indicated that the interactions were significant among the independent variables on water vapor transmission, air permeability, and flammability of the test specimens. For example, the rinse cycle softener significantly decreased the water vapor transmission and air permeability of cotton fabric but had no effect on polyester fabric. The dryer sheet softener also decreased the water vapor transmission of cotton fabric but had no effect on polyester fabric, and it had no effect on the air permeability of both cotton and polyester fabrics. In addition, the air permeability of cotton specimens treated with the rinse cycle softener continuously reduced after repeated laundering, but that of polyester fabrics treated with the rinse cycle softener only reduced after 15 laundering cycles and showed no continuous decrease when laundering cycles increased. When the influence of fabric softener treatments on flammability was examined, the results showed that the more the specimens were laundered with the rinse cycle softener, the greater the flammability of the test specimens. However, the dryer sheet softener did not have a significant effect on the flammability of the test fabrics even after repeated laundering. For the polyester fabric, all specimens treated with the dryer sheet softener or no softener passed the standard of children's sleepwear even after 25 laundering cycles, but those treated with the rinse cycle softener did not pass the standard. In conclusion, fabric softener treatment had a significant influence on the thermal comfort (i.e., water vapor transmission and air permeability) and flammability of 100% cotton and 100% polyester fabrics after repeated laundering cycles and the effects were significantly different among the three independent variables (i.e., fabric softener treatments, fabric types, and number of laundering cycles). The applications of these results were also discussed. / Master of Science
4

Macro and microclimate effects on cover zone properties of field cured concrete

Al-Kindy, Adil January 1998 (has links)
Three sets of concrete blocks were cast to investigate the effects of natural exposure conditions, at the macro and microclimate scale, and field curing on the performance and durability of OPC and OPCjGGBS concretes. These are termed the Loughborough winter series, the Loughborough summer series and the Muscat summer series. Three concrete mixes were investigated in the two Loughborough series (30 and 50 MPa OPC concrete mixes and a 30 MPa OPCjGGBS concrete mix) and two in the Muscat weather series (the two 30 MPa concretes). A group of specimens were cast with each mix consisting of 600 x 500 x 150mm concrete blocks plus control cubes and prisms. The samples were cured in-situ and exposed to a range of curing methods and microclimates. Surface zone properties (up to 50mm depth) were evaluated by air permeability, sorptivity, carbonation, thermogravimetry (TG) and mercury intrusion porosimetry (MIP) tests, conducted after 3 and 12 months of site exposure. The results revealed distinct variations due to macroclimate, microclimate, curing, concrete type and age. The air permeability, sorptivity and carbonation of the concrete exposed under moderate and rainy conditions of a Loughborough summer season were lower than identical concrete cast and cured during a very cold and dry Loughborough winter season. Further, the sorptivity of concrete subjected to the hot and dry climatic conditions of Muscat was significantly higher than companion samples subjected to the temperate Loughborough climate. Significant variations in properties were observed within the two sides of the same concrete element, each subjected to a different microclimate. The air permeability, sorptivity, carbonation and porosity were reduced with increased hessian curing duration. However, premature drying of wet hessian during curing had an adverse effect on concrete quality as this produced concrete of higher permeability and carbonation than non-cured concrete. The application of controlled permeability formwork was effective in improving the concrete's sub-surface properties. The curing affected zone (CAZ) extended to approximately 20mm below the surface of the concrete that was exposed to the Loughborough winter and summer climate, and 40-50mm for the concrete exposed to the Muscat climate, with notable variation in properties due to climate and curing. The TG and MlP results provided insights into the mechanisms associated with the variations in the three concrete's properties due to natural field exposure.
5

Nanocellulose in pigment coatings : Aspects of barrier properties and printability in offset / Nanocellulosa i mineralbestrykningar : Några aspekter på barriäregenskaper och tryckbarhet i offset

Nygårds, Sofie January 2011 (has links)
Papers are coated in order to improve the properties of the surface, to improve printability and to include new functionalities like barriers properties. Typical coating formulation contains a high number of components, some are made from minerals and others are manufactured from petroleum. The barrier properties of today's paper based packages are plastics and/or aluminum             foil. Environmentally friendly substitutie of these nonrenewable materials are needed.  Nanocellulose is a promising material                 and of a growing interest as an alternative to petroleum-based materials, since nanocellulose films/coatings have been shown to have excellent mechanical and barrier properties.   This project aimed to evaluate nanocellulose in combination with minerals in paper coatings. The project had two approaches. One was to evaluate the barrier properties of MFC coatings with mineral included. The second part was about coatings for           printing matters, and evaluation of the possibility to replace petroleum-based binders in the coating color with MFC. Barrier properties were evaluated by measuring the air permeability of the coatings. The properties of the coating affecting the         printability in offset printing examined was the surface energy, the gloss, the roughness of the coatings, the strength and the offset ink setting.   Carboxymethylated nanocellulose formed denser films and had superior barrier properties compared with enzymatically pretreated nanocellulose. Adding of minerals did not affect the barrier properties of the MFC coatings to a significant extent.         Therefore, minerals cannot be added to enhance the barrier but it can be added to reduce the cost of the coating process without losing any barrier properties.                                 The print quality depends on how the ink interacts with the coating. These coatings did have a relatively high surface energy, which is preferable for printing with waterborne ink. It was also shown that the absorption abilities increased when the amount of MFC was increased. However, offset printing demands high surface strength and addition of MFC in the coating color                     drastically decreased the strength. This means that the coatings produced in this work are not strong enough and thereby not           suitable for offset printing. However other printing technologies put lower demand on surface strength and are still possible.
6

Soil Air Permeability and Saturated Hydraulic Conductivity: Development of Soil Corer Air Permeameter, Post-fire Soil Physical Changes, and 3D Air Flow Model in Anisotropic Soils

Chief, Karletta January 2007 (has links)
Air permeability (ka) is a viable alternative to water- and texture-based methods to rapidly map saturated hydraulic conductivity (Ksat). The ability to measure this important hydraulic property without the use of more cumbersome and time-consuming methods may provide a practical approach to generate more complete data to describe hydrologic conditions. This study presents the development of an air permeameter which is suitable for desert soils. The Soil Corer Air Permeameter (SCAP) is compatible with a standard soil corer and employs digital components to measure flowrates under low-pressure gradients to improve accuracy, ease of use, and portability. SCAP allows for the extraction of undisturbed soil samples for laboratory analysis, providing direct comparisons of ka with other soil physical and hydraulic properties. The applicability of a regression equation to estimate Ksat from field-measured ka using SCAP was examined in unburned and burned soils. Ex situ field ka and laboratory Ksat measurements were compared and air to water permeability (ka/kw) ratios were calculated to determine structural changes due to water saturation. The study also characterized changes in permeability due to fire in woodland-chaparral and coniferous soils. For soils that could be extracted with minimal structural changes, results show ka and Ksat measurements for unburned and burned soils were within the 95% confidence intervals of a ka-Ksat regression developed for agricultural soils. However, correlations for in situ ka measurements in some burned soils showed a decrease in accuracy and may be attributed to soil anisotropy. A three-dimensional steady-state finite element air flow model was developed using FEMLAB 3.0A to consider the effects of anisotropy on in situ ka measurements. Results show that anisotropic conditions can introduce an error as high as a factor of 2 especially for air permeameters with high diameter to height (D/H) ratios, however, the error is much smaller than the anisotropy ratio. If anisotropy is important to characterize, it was shown that paired measurements of in situ and ex situ ka can be used to infer the anisotropy ratio.
7

Effects of soluble soybean polysaccharide as filling agent on the properties of leathers

Tang, Zhenye, Zhong, Jide, Feng, Xianqing, Zhang, Yafei, Hu, Yadi, Liu, Hui, Liu, Jie, Ferah, Cem Emre, Tang, Keyong 28 June 2019 (has links)
Content: Soluble soybean polysaccharide (SSPS) is good in emulsification, and stable emulsion may be formed with the addition of SSPS in fatliquoring agents. In this paper, with wet blues as raw materials, after being retanned and neutralized, fatliquoring and filling up with SSPS were carried out at the same time, with different amounts of SSPS, i.e., 1%, 3%, 5%,7% in weight. The leather samples were dried at room temperature. The effects of SSPS amounts on the thickness, air permeability and water vapor permeability of the crust leather were studied. The tensile properties of the leathers filled by SSPS were analyzed. The results indicated that with increasing the amounts of SSPS, the thickness and the water vapor permeability of the leathers increase, while the air permeability decreases slightly. The maximum stress-strain capacity of leathers decreases with increasing the SSPS amount. At the SSPS amount of 3%, the leather is good in softness, as well as in physical and mechanical properties. Take-Away: 1.SSPS from soybean dregs is an acidic polysaccharide, which is rich in raw materials and low in cost. 2.Leathers filled with SSPS have good performance.
8

Bicomponent Fiber in Sound Absorbent Production : Investigation of using bicomponent fiber as adhesive between woven and nonwoven textile and how it affects the sound absorption

LINDSTRÖM, KATARINA January 2014 (has links)
A new way of adhering woven textile to a nonwoven backing was explored, the end product in mind being a sound absorbent panel. Today a hot melt adhesive is sprayed on the nonwoven with woven decorating textile put on top before compression molding. This method results in an uneven layer of adhesive with the consequence of decorating textile detaching from the nonwoven and thereby a high number of discarded products. The report investigates the possibility of using a bicomponent fiber as the adhesive. This would guarantee an even layer of adhesive and make the manufacturing process one step shorter. A bicomponent fiber of core/sheath construction with a low melting polymer in the sheath was incorporated in the nonwoven upon fabrication. In the main bulk of the nonwoven a smaller ratio of bicomponent to normal polyester fiber was used, enough to stabilize the nonwoven. For the top layer of the nonwoven a higher ratio was chosen. As the nonwoven is then compression molded under heat together with the decorating textile, the low melting sheath of the bicomponent fiber will melt and create bonds within the nonwoven as well as to the textile. The ratio in the top layer was varied as well as the pressure in compression molding. The adhesion strength between nonwoven and decorating textile was tested, and the sound absorbing properties of the different manufactured samples were compared. The sound absorbing parameter of air flow resistance was tested and sound absorption was tested using impedance tube with transfer function method. Further, a way of testing transmission loss was developed by the manufacturing of a custom built impedance tube, which was then compared to the transfer function method. The results showed that a higher bicomponent percentage gave higher sound absorption in lower frequencies, but a lower sound absorption in higher frequencies. The thickness of the samples gave a positive effect on the sound absorption in all frequencies. The conclusion is to recommend a thicker material, and choose bicomponent according to which frequencies that should be absorbed and what adhesion strength is needed for end product. / Program: Textilteknik
9

Determinação da permeabilidade em madeiras brasileiras de florestas plantadas / Permeability measurements in brazilian wood of reforestation species

Silva, Marcio Rogério da 20 March 2007 (has links)
Este trabalho tem por finalidade o estudo da permeabilidade da madeira, com ênfase nas espécies de florestas plantadas do gênero de Pinus elliotti, Eucalyptus grandis e Eucalyptus citriodora. Com a sua determinação, avalia-se o quanto uma dada espécie de madeira é permeável a preservativos (tratamentos químicos) e o quanto ela é permeável a aplicação de adesivos estruturais (confecção de peças estruturais em Madeira Laminada Colada MLC). A avaliação da permeabilidade é um fator fundamental para definição do tratamento preservativo da madeira. Para isto foi projetado e construído um equipamento alternativo, para uso laboratorial, visando determinar a permeabilidade e analisar qual espécie dentre as estudadas seriam mais permeáveis a fluidos líquidos e gasosos em madeiras brasileiras de florestas plantadas. O equipamento construído permite a determinação do escoamento de fluidos em corpos-de-prova cilíndricos de madeira, em todas as suas direções ortogonais. Os resultados obtidos mostram que o equipamento é adequado para a determinação da permeabilidade a líquido ou gás em madeiras, onde na direção longitudinal, o alburno E. grandis é a parte do lenho mais permeável a líquido e gás, seguido do alburno do E. citriodora, Pinus elliottii e cerne do E. grandis. Com exceção do Pinus elliottii na direção transversal, as demais espécies não apresentaram vazão nesta direção. / This work aims to study permeability of wood especially in reforestation species like Pinus elliotti, Eucalyptus grandis and Eucalyptus citriodora in order to evaluate how much a given wood species is permeable to preservatives (chemical treatments) and how much it is permeable to application of structural adhesives (making of structural pieces in Glued Laminated - MLC). Evaluation of permeability is a fundamental factor when defining the preservative treatment to able applied in the wood, so an alternative equipment has been especially designed and built aiming to determine its permeability and analyze which one of the studied Brazilian reforestation species would be more permeable to liquid and gaseous fluids. This laboratorial equipment has allowed determination of fluid drainage in cylindrical samples of wood in all of its orthogonal directions. Obtained results have shows that it is appropriate for determining liquid or air permeability of wood where, in longitudinal direction, E. grandis sapwood has been the most permeable part, followed by E. citriodora sapwood, Pinus elliottii and E. grandis heartwood. None of the species has presented any flow in traverse direction, except Pinus elliottii.
10

Contribution au développement d’une pince universelle pour la manipulation des matériaux souples / Contribution of the development of a universal gripper for handling flexible materials

Ebraheem, Yousef 15 September 2014 (has links)
Le travail présenté dans ce mémoire concerne le développement d’un système universel de manipulation de matériaux textiles souples. Il s’agit d’une pince de manipulation universelle qui se compose de trois techniques de manipulation, technique de vide, technique d’intrusion, technique de pincement. Cette pince universelle a été développée pour manipuler une surface textile de 100 x 100 mm². Les buts de cette pince sont les suivants: Acquérir une seule couche à partir d'un empilement de tissus.Tenir une seule couche, la transférer et la manipuler jusqu’au poste suivant.La technique de vide est la première technique développée dans notre recherche, elle se compose des organes de préhension qui sont « trois ventouses pneumatiques » dont les matériaux varient en fonction des matériaux textiles à manipuler, trois compensateurs de hauteur pour fixer les ventouses pneumatique et d'un générateur de vide pour créer le vide nécessaire grâce à un régulateur de pression. Les trois ventouses pneumatiques sont placées précisément sur les têtes d’un triangle équilatéral, au-dessus de la pièce textile. La technique d’intrusion est la deuxième technique développée dans notre recherche, cette technique est constituée de deux parties principales: Une partie qui donne le mouvement et l'actionnement des organes de préhension.Une partie de préhension qui contient des éléments de préhension qui sont des aiguilles.L’ensemble est commandé, au travers de vérins, par de l’air comprimée. La technique de pincement est la troisième technique développée dans notre recherche, elle comprend des organes de serrage opposés qui sont à mis en mouvement de façon alternative par deux vérins pneumatiques Deux types de validation des éléments constituant de la pince de préhension développée ont été réalisés avec succès, une validation statique en utilisant un support de fixation, une validation dynamique en utilisant un bras de robot. Pendant la validation statique, nous avons trouvé que la technique de vide fonctionnait très bien avec les matériaux imperméables à l’air et avec des matériaux ayant une porosité inférieure à 80% et/ou une perméabilité inférieure à 1500 L/m²/s sous 200 Pa.Pour les matériaux textiles ayant une porosité supérieure à 80% et/ou d’une perméabilité supérieure à 1500 L/m²/s sous 200 Pa, la consommation importante d’air comprimé interdit l’utilisation de cette technique et la force réelle d’attraction dépendant des propriétés du matériau manipulé suivant :La porosité, La perméabilité à l’air, La masse surfacique de matériau. Concernant la technique d’intrusion, nous trouvé que cette technique permet une manipulation efficace des matériaux textiles qui sont difficiles à manipuler par la technique de vide. Elle fonctionne très bien pour des matériaux perméables à l’air (tissus d’armure toile, tricots) alors qu’elle endommage les matériaux imperméables. Les risques liés à cette technique est le prélèvement de plusieurs couches à la fois si la profondeur de perçages des aiguilles n’est pas contrôlé précisément. Pendant la validation statique de la technique de pincement, nous avons trouvé que cette technique ne fonctionne pas bien seule.Pour résoudre ce problème, nous avons utilisé, la combinaison de deux technologies La technique d’intrusion technique La technique de pincement Et La technique de vide. La technique de pincement Les résultats trouvés pendant la validation de cette technique sont les suivants : la technologie de vide associée à la technique de serrage est la combinaison la plus efficace et la plus fiable, par contre un des inconvénients de cette technique est le contrôle de la force de serrage afin d’éviter l’endommagement de la surface de matériau manipulé. [...] / The work presented in this thesis concerns the development of a universal system for handling flexible textile materials. This is a universal gripper for manipulation, which consists of three technologies of manipulations, vacuum technology, intrusion technology, pinch technology. This new universal system was developed to handle a pieces of cut fabrics a square shape which had the dimensions of 100 mm×100 mm. The aims of this gripper are: Acquiring a single ply from a stack of woven fabrics Acquiring a single ply, handling and transfer it to the next station.The vacuum technology is the first technique developed in our research, it consists of a grippers which are « three pneumatic flat suction pads with stops » whose materials vary according to the manipulate textile materials, three level compensators for fixing the penumatic flat suction pads and a pneumatic vacuum generator to create the necessary vacuum thanks to a pressure regulator. The three pneumatic flat suction pads are precisely placed on the heads of an equilateral triangle, above the textile piece.The intrusion technology is the second technique developed in our research; this technique consists of two main parts: A party that gives movement and actuation of the gripper A party for gripping witch include the gripping elements that are needles The both parties are controlled, through a penumatic cylinder, by compressed air.The pinch technology is the third technique developed in our research; it comprises clamping grippers which are placed oppositely to moving alternately by two pneumatic cylinders.Two types of validation of the elements constituting of the gripper developed are performed, static validation by using a bracket, dynamic validation by using the robot arm.During the validation static, we found that the vacuum technology performs well for non-permeable materials and with the materials whose their porosity less of the 80 % and their air permeability less than 1500 L/m²/s under 200 pa.For the materials textiles whose their porosity more than 80 % and their permeability more than 1500 L/m²/s under 200 pa, the high consumption of compressed air prohibits the use of this technique, and the real force of attraction dependent on the following material manipulated properties: • Porosity of the material• Air permeability• Weight of the material.Concerning the intrusion technique, we found that this technique allows realizing an effective handling of textile materials which are difficult to handle by the vacuum technique. It performs very well for air permeable materials (plain weave fabrics, knitted fabrics), while damaging waterproof materials. The risk associated with this technique is the manipulation multiplies of the layers at a time if the depth of the piercing of the needles is not precisely controlled.During the static validation of the pinch technique, we found that this technique does not function well alone. To solve this problem, we used, the combination of two technologies: Intrusion technology Pinch technology and Vacuum technology Pinch technologyThe results found during the validation of this technique are: the vacuum technology associated with the pinch technology is the most effective combination and more reliable, by against one disadvantage of this technique is the control of the clamping forces to prevent the damage of the material surface manipulated.For the dynamic validation of the gripper developed, we used the robot manipulation STÄUBLI. We fixed the gripper on the end of the arm of robot and after setting it, we varied the speed of manipulation to determine the limits of the manipulation by each technology.These validation procedures have in evidence the limits of our new gripper in terms of capacity of the gripping, consumption of the compressed air, characteristics and limitations of the flexible materials handled. [...]

Page generated in 0.1036 seconds