Spelling suggestions: "subject:"full conditioning"" "subject:"fue conditioning""
1 |
Fuel consumption measurements and fuelconditioning in high-pressure fuel systemfor single cylinder test cell / Mätning av bränsleförbrukning och konditionering av bränsle i högtrycksbränslesystem för encylinderprovcellAksoy, Can Aksoy January 2019 (has links)
This master thesis is part of a bigger project issued by AVL with the purpose to design a high pressure compression ignition fuel system for their single cylinder test cell at their facility in Södertälje. Typically compression-ignition fuel tests are being run within an operating pressure range of 500-2400 bar, but this system has to be able to run with pressures up to 3500 bar. The project was intended to be carried out by two participants where this master thesis covers the evaluation of how fuel consumption rates shall be measured in the system described above as well as how the fuel shall be conditioned. The selected concept for measuring fuel consumption rate was based on measuring the mass flow on the low-pressure side of the system with a Coriolis flowmeter. The chosen temperature sensor for monitoring the temperature on the high-pressure side was a K-type thermocouple which would be directly connected to the fuel rail in the system. A bleeder was selected on the basis that it had been used in one of AVL's old test cells. A heat exchanger could not be chosen. However a rough estimation of the capacity needed for a heat exchanger was calculated for future reference. The methodology used to develop a concept was based on the engineering project process taught to students at Karlstad University. First a project plan was made followed by a solution-independently expressed product specification including a specification of requirements and QFD-matrix. Several concepts were generated for measuring the fuel consumption by evaluating different measuring principles, available components, possible positions of the components within the system and combinations with different fuel supply concepts. Less extensive methods were used for the remaining tasks in the detailed engineering phase of the project. The concepts were compared using Pugh's analysis and a concept was selected in collaboration with AVL. The majority of the objectives for this master thesis could be successfully carried out. The documentation and drawings requested by the client, manufacturing of the system, implementation and validation into the test cell could not be done due to lack of time. This, along with the selection of a heat exchanger and low-pressure thermocouple was left for future work.
|
Page generated in 0.1181 seconds