• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Decreasing average wildfire size through random fuel treatments: A boreal forest case study.

Vojtek, Stacey Lynn 10 April 2007 (has links)
Area burned in boreal forests is increasing due to climate change effects and regional increases in fuels due to a history of successful fire suppression. An increase in area burned threatens valuable resources and infrastructure in timber resources areas and communities. The ecological integrity of protected areas may also be threatened if fires increase in frequency and size beyond what would have occurred prior to effective fire suppression and the effects of climate change. Fuel management is one strategy being tested by fire management agencies and researchers to address these concerns. However the pattern of fuel management that best regulates area burned has yet to be determined. This thesis investigates random fragmentation of highly flammable fuels in the boreal forests of North-western Ontario. A case study of Quetico Provincial Park is used. Using the fire growth simulation model, Prometheus, I tested whether, under extreme fire behaviour conditions, fuel isolation (FI) and fuel conversion (FC) were effective at reducing average area burned in the park. Through the simulation of over 21,000 large fires, I determined that FI and FC are effective in significantly reducing area burned for this case study. Based on these findings, random FI and FC should be studied further on a regional basis and as a prescriptive, proactive method of reducing area burned in boreal forests.
2

Decreasing average wildfire size through random fuel treatments: A boreal forest case study.

Vojtek, Stacey Lynn 10 April 2007 (has links)
Area burned in boreal forests is increasing due to climate change effects and regional increases in fuels due to a history of successful fire suppression. An increase in area burned threatens valuable resources and infrastructure in timber resources areas and communities. The ecological integrity of protected areas may also be threatened if fires increase in frequency and size beyond what would have occurred prior to effective fire suppression and the effects of climate change. Fuel management is one strategy being tested by fire management agencies and researchers to address these concerns. However the pattern of fuel management that best regulates area burned has yet to be determined. This thesis investigates random fragmentation of highly flammable fuels in the boreal forests of North-western Ontario. A case study of Quetico Provincial Park is used. Using the fire growth simulation model, Prometheus, I tested whether, under extreme fire behaviour conditions, fuel isolation (FI) and fuel conversion (FC) were effective at reducing average area burned in the park. Through the simulation of over 21,000 large fires, I determined that FI and FC are effective in significantly reducing area burned for this case study. Based on these findings, random FI and FC should be studied further on a regional basis and as a prescriptive, proactive method of reducing area burned in boreal forests.
3

Effects of Wildland Urban Interface Fuel Treatments on Fire Behavior and Ecosystem Services in the Klamath Mountains of California

Large, Jonathan A 01 August 2010 (has links) (PDF)
Greater numbers of people are moving into wildland-urban interface (WUI) areas, increasing the number of people at risk to large wildfires. To mitigate the hazard, emphasis is often placed on fuel treatments used to reduce fuel loads and subsequent fire behavior. This approach overlooks the additional benefits provided by vegetation, including carbon storage and sequestration along with air pollutant removal. This study aimed to calculate and compare differences in representative values by examining a study site in the Klamath Mountains of Northern California. Fire behavior simulations were done under various weather scenarios to illustrate both the impact of weather on fire intensity as well as the limitations of various fuel treatments. Ecosystem services were modeled using the I-tree Eco software (formerly the Urban Forest Effects model). Results showed a reduction in surface and an increase in canopy base height from the treatments and subsequent reductions in fire intensity under moderate and high conditions with the largest difference occurring in the Thin + Fire treatment. Under extreme weather conditions, the effectiveness of all fuel treatments was reduced. Ecosystem services showed a reduction of carbon sequestration in the fuel treatments corresponding to the reduction of smaller diameter trees from the fuel treatments. The greatest difference occurred in the Thin + Fire treatment. These results and the methods used to acquire them show the impacts from fuel treatments can be characterized and compared. This information will allow land managers to make decisions that account for a variety of considerations, while also providing them with tools that can facilitate the cooperation and collaboration of multiple stakeholders.

Page generated in 0.0889 seconds