11 |
Méthodes avancées d'évaluation des charges de vent sur les structures de concentrateurs solairesKaabia, Bassem January 2017 (has links)
L’énergie solaire photovoltaïque concentré (CPV) est une solution de remplacement prometteuse aux structures solaires conventionnelles. Ce type de structure modulable doit être optimisé afin d’être compétitif par rapport aux autres types de production d’énergie. Les forces de vent demeurent la première préoccupation dans la conception de la structure porteuse en acier d’un tel système. L’objectif principal de cette recherche est d’assembler des outils numériques et analytiques afin de prédire les caractéristiques de sa réponse dynamique sous charges de vent turbulent. La maîtrise de cette étape est essentielle afin d’étudier d’une façon plus générique des solutions d’optimisation de la structure support par rapport à sa réponse dynamique sous charges de vent. Pour ce faire, la méthodologie principale de cette étude est composée en trois parties : (i) étude expérimentale à grandeur nature de la réponse globale sous les conditions réelles du vent ; (ii) développement des modèles d’analyse numérique dans lesquels les caractéristiques de structures réelles et des
modèles de forces aérodynamiques adéquates sont prises en compte ; (iii) application des outils développés dans une étude paramétrique pour évaluer plusieurs solutions à partir de cas d’étude dans le contexte d’une conception préliminaire.
Cette thèse est présentée sous forme de deux articles qui ont été soumis dans des revues évaluées par des comités de lecture ainsi que d’un article soumis et présenté dans un congrès international qui démontrent les contributions de cette recherche pour améliorer les pratiques de calcul des charges de vent sur des structures de concentration solaire non conventionnelles. Ces articles sont présentés comme suit (a) Étude expérimentale à échelle réelle de la réponse d’un prototype de concentrateur solaire sous charges de vent. Ce premier article a permis la validation de calcul des coefficients de forces aérodynamiques statiques et la révision des hypothèses de l’application du code ASCE 7-10 pour prédire les forces maximales agissant sur la structure dans la direction du vent ; (b) l’analyse temporelle
de la réponse dynamique d’une structure de concentrateur solaire sous charges de
vent. Cette étude a montré que le modèle et la méthode d’analyse développés selon des hypothèses simplifiées permettaient de prédire correctement les caractéristiques statistiques de la réponse dynamique mesurée en cohérence avec la méthode spectrale stochastique ; (c) Étude des effets des configurations structurales et des paramètres de vent sur l’optimisation de structure solaires sous charges de vent. Cette étude paramétrique a mis en évidence l’importance de l’effet des paramètres structuraux et ceux définissant le vent sur l’optimisation de la conception structural pour ce type de structure. Des recommandations pour optimiser l’action dynamique dans une phase de conception préliminaire ont été proposées. Ce projet de recherche a démontré finalement l’importance d’étudier d’une façon juste et pratique la réponse dynamique sous charges de vent qui mène à résoudre des préoccupations d’optimisation liées à différents types de structures d’énergie solaire en adoptant des hypothèses pratiques pour les ingénieurs. / Abstract : Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar
structures. These solar traking structures need to be optimized to be competitive against
other types of energy production. Wind action is the main concern in the design of the
steel support structure of such movable system. The main purpose of this research is to
assemble advanced numerical and analytical tools that allows realistic dynamic study of
structures under wind loading. This help to study accurately optimized alternative in
term of selecting structural and wind site conditions parameters. The methodology of the
present study involves three main steps : (i) experimental full-scale study of the global
response under real life wind conditions ; (ii) numerical modeling that captures the characteristics
of the real structures and include the aerodynamic force models to conduct
time-domain dynamic analyses ; (iii) preliminary design application that include the study
of the effect of stuctural and wind parameters in optimizing the dynamic wind action and
consequently the steel support structure.
The thesis is presented as an ensemble of three articles written for refereed journals and a
conference that showcase the contributions of the present study to thoroughly understand
the wind load effect on these nonconventionnel structures. The articles presented are as
follow (a) full-scale measurement of the response of a CPV tracker structure prototype
under wind load. The results presented in this first article help design engineers to evaluate
the use of the aerodynamic force coefficients for calculating wind load on similar structures
and to apply properly the ASCE7-10 in evaluating the maximum design wind force using
the equivalent static approach ; (b) time-domain analysis of solar concentrator structure
under gust wind. This study showed that the developed time-domain model using simplified
hypothesis could successfully predict the statistical parameters of the measured
dynamic response in coherence with the stochastic spectral approach ; (c) effect of structure
configurations and wind characteristics on the design of solar concentrator support
structure under dynamic wind action. This parametric study highlighted the importance
of selecting structural and wind parameters in order to minimize the dynamic action and
the steel support structure. Recommendations for optimizing dynamic wind action in a
preliminary design phase were proposed. The present research project has shown the need
to study accurately wind response to solve optimization concerns related to different type
of solar system structures. In addition, this study proposes simplified methods that are
useful for practical engineers when there is the need to solve similar problems.
|
12 |
Industrial steel storage racks subjected to static and seismic actions: an experimental and numerical studyBernardi, Martina 16 November 2021 (has links)
Industrial steel storage racks are pre-engineered lightweight structures commonly used to store goods from supermarkets to big warehouses. These systems are framed structures, usually made of cold-formed steel profiles and characterised by non-standard details. Their performance is quite complex and the prediction of their global response is more difficult than for the traditional steel frames. This difficulty is due to the racks’ main features: the use of cold-formed thin-walled steel sections which are sensitive to different buckling modes, the presence of regular perforation patterns on the uprights, the highly non-linear behaviour of joints, the influence of the structural imperfections and the significant frame sensitivity to second order effects. The behaviour of racks becomes even more complex when seismic or accidental events induce significant horizontal forces acting on the structures. The complexity and variability that characterise racks make it difficult to identify general design solutions. Hence, racks design is traditionally carried out by using the “design by testing” approach, which requires the experimental characterisation of the main structural components, of the joints and the sub-assemblies. The complexity of the racks also affects their numerical modelling, which results in complex analyses that must take into account all the aforementioned features. The work presented in this thesis focuses on the study of a typical steel pallet rack, identified as case study. The research aims to contribute to building up a comprehensive knowledge of the response of both the main rack components and of the whole structure. The main rack components were first individually studied. The behaviour of the uprights, of the base-plate joints and of the beam-to-column joints was experimentally investigated. The experimental data were then taken as reference for the calibration of FE models that enabled exploring each component’s performance. These models were then incorporated into the whole rack model. The response of the uprights was first investigated through stub column tests. The non-negligible interaction between axial force and bending moment of the upright response was then experimentally and numerically analysed to define the M-N domains. In addition, the rules provided by different European standards for the design of isolated members subjected to combined axial load and bending moment were considered and critically compared, identifying the main critical issues of the different design approaches. Although the contribution of joints on the rack global response is of paramount importance, to date, the knowledge is quite limited. In particular, the experimental studies of the behaviour of base-plate joints are still rather modest, especially for the cyclic range. Therefore, an experimental campaign on the rack base-plate joints was carried out: three levels of axial load were considered and the response in both the down-aisle and the cross-aisle direction was investigated under monotonic and cyclic loadings. Similarly, the beam-to-column joint was tested both monotonically and cyclically, taking into account its non-symmetric behaviour. Numerical models for both joint types were developed and validated enabling the characterisation of joints in the monotonic and cyclic range. This in-depth knowledge of the response of individual components facilitated the evaluation of the global rack behaviour. As a final stage of the research, full-scale tests of four-level two-bay racks were performed taking advantage of an innovative full-scale testing set-up and, on the basis of the experimental outcomes, the racks’ global behaviour was numerically investigated. Critical standards issues and needs for future research were further identified.
|
Page generated in 0.0509 seconds