• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intra-prediction for Video Coding with Neural Networks / Intra-prediktion för videokodning med neurala nätverk

Hensman, Paulina January 2018 (has links)
Intra-prediction is a method for coding standalone frames in video coding. Until now, this has mainly been done using linear formulae. Using an Artificial Neural Network (ANN) may improve the prediction accuracy, leading to improved coding efficiency. In this degree project, Fully Connected Networks (FCN) and Convolutional Neural Networks (CNN) were used for intra-prediction. Experiments were done on samples from different image sizes, block sizes, and block contents, and their effect on the results were compared and discussed. The results show that ANN methods have the potential to perform better or on par with the video coder High Efficiency Video Coding (HEVC) in the intra-prediction task. The proposed ANN designs perform better on smaller block sizes, but different designs could lead to better performance on larger block sizes. It was found that training one network for each HEVC mode and using the most suitable network to predict each block improved performance of the ANN approach. / Intra-prediktion är en metod för kodning av stillbilder i videokodning. Hittills har detta främst gjorts med hjälp av linjära formler. Användning av artificialla neuronnät (ANN) skulle kunna öka prediktionsnoggrannheten och ge högre effektivitet vid kodning. I detta examensarbete användes fully connected networks (FCN) och convolutional neural networks (CNN) för att utföra intra-prediktion. Experiment gjordes på prover från olika bildstorlekar, blockstorlekar och blockinnehåll, och de olika parametrarnas effekt på resultaten jämfördes och diskuterades. Resultaten visar att ANN-metoder har potential att prestera bättre eller lika bra som videokodaren High Efficiency Video Coding (HEVC) för intra-prediktion. De föreslagna ANN-designerna presterar bättre på mindre blockstorlekar, men andra ANN-designs skulle kunna ge bättre prestanda för större blockstorlekar. Det konstaterades att prestandan för ANN-metoderna kunde ökas genom att träna ett nätverk för varje HEVC-mode och använda det mest passande nätverket för varje block.

Page generated in 0.0719 seconds