• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 21
  • 16
  • 6
  • 3
  • Tagged with
  • 189
  • 58
  • 57
  • 33
  • 33
  • 33
  • 33
  • 33
  • 32
  • 31
  • 29
  • 26
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funciones Reales α Homogeneas de Grado Uno

Torres Orihuela, Fernando Eduardo 25 September 2017 (has links)
El objetivo de este artículo es responder a ¿qué podemos decir acerca de una tal función? Sin embargo, como se verá a continuación, una función no tiene por qué ser continua en el "o", y, aún permitiendo discontinuidad en un conjunto de medida de Lebesgue cero, no se obtendrá la linealidad.
2

Cálculo 1. MTA1. Funciones, límites y continuidad: función exponencial y función seno

06 September 2013 (has links)
Conceptos y propiedades de funciones exponenciales y senos en el planteamiento y solución de situaciones matemáticas. Temario: Función exponencial: 1. Regla de correspondencia -- 2.Gráficos, interceptos y asíntotas -- 3.Dominio y rango -- 4. Aplicaciones. Función Seno: 1. Regla de correspondencia -- 2. Gráficos, periodicidad, desfase y amplitud -- 3. Dominio y rango -- 4. Aplicaciones.
3

Discrete analytic continuation of a (p, q)- analytic function

Ahmad Khan, Mumtaz, Najmi, M. 25 September 2017 (has links)
In this paper a method is devised for the continuation into the discrete plane Q' of functions defined on the positive half-axes and the properties of continuation operator discussed.
4

Singularidades de campos vectoriales holomorfos en el dominio de Poincaré

Benazic, Renato 25 September 2017 (has links)
No description available.
5

Familias normales y grupos discontinuos

Tamara Albino, Jimmy Rainer 09 December 2013 (has links)
El objetivo principal de la presente tesis es presentar la teoría de las familias normales y mostrar su importancia en la teoría de grupos discontinuos y discretos. Primero haremos un estudio de las propiedades de las transformaciones de Moebius y luego su clasificación por conjugación. Para así introducirnos en la teoría de familias normales para funciones holomorfas y meromorfas. A partir de ello probaremos algunos resultados de normalidad para transformaciones de Moebius en especial el teorema fundamental de normalidad para transformaciones de Moebius. Finalmente veremos que un grupo Γ de transformaciones de Moebius es discontinuo en un punto α si y solo si Γ es discreto y forma una familia normal en α. / Tesis
6

Función de Jones T , continuos T - aditivos, T - simétricos y puntualmente T - simétricos

Chupayo Evangelista, Heidi Marlene January 2017 (has links)
Publicación a texto completo no autorizada por el autor / La idea central de la tesis es detallar algunas propiedades topológicas en términos de la función T de Jones denominada por F. Burton Jones. : Se introduce la función de Jones T, los continuos T - aditivos, T -simétricos y puntualmente T -simétricos. Se dan algunas propiedades de la continuidad de la función de T y por último la condición necesaria bajo las cuales existan relaciones entre continuos T -aditivos, T -simétricos y puntualmente T -simétricos. / Tesis
7

Cálculo 1. MTA3. Derivadas: Regla de L'Hopital

06 September 2013 (has links)
Conceptos y propiedades de la derivada para calcular los límites de una función para casos indeterminados en el planteamiento y solución de situaciones matemáticas.
8

Contribution to nonsmooth lyapunov stability of differential inclusions with maximal monotone operators

Nguyen, Bao January 2017 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática en cotutela con la Universidad de Limoges / In this PhD thesis, we make some contributions to nonsmooth Lyapunov stability of first-order differential inclusions with maximal monotone operators, in the setting of infinite-dimensional Hilbert spaces. We provide primal and dual explicit characterizations for parameterized weak and strong Lyapunov pairs of lower semicontinuous extended-real-valued functions, referred to as $a-$Lyapunov pairs, associated to differential inclusions with right-hand-sides governed by Lipschitz or Cusco perturbations $F$ of maximal monotone operators $A$, ẋ(t) ∈ F (x(t)) − A(x(t)), t ≥ 0, x(0) ∈ dom A. Equivalently, we study the weak and strong invariance of sets with respect to such differential inclusions. As in the classical Lyapunov approach to the stability of differential equations, the presented results make use of only the data of the differential system; that is, the operator $A$ and the multifunction $F$, and so no need to know about the solutions, nor the semi-groups generated by the monotone operators. Because our Lyapunov pairs and invariant sets candidates are just lower semicontinuous and closed, respectively, we make use of nonsmooth analysis to provide first-order-like criteria using general subdifferentials and normal cones. We provide similar analysis to non-convex differential inclusions governed by proximal normal cones to prox-regular sets. Our analysis above allowed to prove that such apparently more general systems can be easily coined into our convex setting. We also use our results to study the geometry of maximal monotone operators, and specifically, the characterization of the boundary of the values of such operators by means only of the values at nearby points, which are distinct of the reference point. This result has its application in the stability of semi-infinite programming problems. We also use our results on Lyapunov pairs and invariant sets to provide a systematic study of Luenberger-like observers design for differential inclusions with normal cones to prox-regular sets. The thesis is organized as follows: In chapter 1, we explain the main objectives of the thesis, the methodology that we follow, and we give a preview of the main results. We also make in this chapter a general overview of Lyapunov's theory, and present the main previous achievements on the subject. In Chapter 2, we present the main tools and preliminary results that we need in our analysis. In Chapter 3, we give the desired characterizations of Lyapunov pairs and invariant sets for differential inclusions with Lipschitz perturbations of maximal monotone operators, while in Chapter 4, we investigate differential inclusions with Lipschitz perturbations of proximal normal cones. This chapter includes the application to Luenberger-like observers design. In Chapter 5, we study differential inclusions with Lipschitz Cusco perturbations of maximal monotone operators. In Chapter 6, we give a result on the geometry of maximal monotone operators, and describe the boundary of their values. Finally, we give in Chapter 7 a resume of the results we obtained. / En esta tesis doctoral se realiza una contribución a la estabilidad de Lyapunov no suave de inclusiones diferenciales de primer orden con operadores maximales monótonos, en el con- texto de espacios de Hilbert de dimensión infinita. Se entregan caracterizaciones primales y duales explícitas para los pares de Lyapunov parametrizados débiles y fuertes de funciones inferiormente semicontinuas con valores extendedidos, referidas como pares a-Lyapunov, aso- ciados a inclusiones diferenciales con un lado derecho gobernado por perturbaciones F de tipo Lipschitz o Cusco de operadores maximales monótonos A, ẋ(t) ∈ F (x(t)) − A(x(t)), t ≥ 0, x(0) ∈ dom A. De manera equivalente, se estudian la invarianza débil y fuerte de conjuntos con respecto a tales inclusiones diferenciales. Tal como en el enfoque clásico de Lyapunov para estudiar la la estabilidad de ecuaciones diferenciales, los resultados presentados usan solamente la información del sistema; es decir, el operador A y la multiaplicación F , y, por lo tanto, no es necesario conocer las soluciones ni el semigrupo generado por el operador monótono. Dado que los pares de Lyapunov y conjuntos invariantes considerados aquí son, respectivamente, inferiormente semicontinuos y cerrados, se utiliza el análisis no-suave para proveer criterios de primer order utilizando subdiferenciales y conos lo suficientemente generales. Se realiza un análisis similar al caso de las inclusiones diferenciales no convexas gobernadas por conos normales proximales a conjuntos prox-regulares. Nuestro análisis permite demostrar que tales sistemas, aparentemente más generales, pueden ser fácilmente acuñados en nuestro con- texto. Además, nuestros resultados son utilizados para estudiar la geometría de operadores maximales monótonos, y específicamente, la caracterización de la frontera de los valores de tales operadores mediante sólo los puntos cercanos, diferentes del punto de referencia. Este resultado tiene aplicaciones en la estabilidad de problemas de programación semi-infinita. Además, nuestros resultados se utilizan en los pares de Lyapunov de conjuntos invariantes para realizar un estudio sistemático del diseño de observadores de tipo Luenberger para in- clusiones diferenciales con conos normales a conjuntos prox-regulares. La tesis está organizada de la siguiente manera: en el Capítulo 1, se explican los principales objetivos de la tesis, la metodología seguida, y se entrega una vista previa de los principales resultados. Además, en este capítulo, se da una visión general de la teoría de Lyapunov, y se presentan los resultados previos en el tema. En el Capítulo 2, se presentan las principales herramientas y los resultados preliminares necesarios en nuestro análisis. En el Capítulo 3, se entregan las caracterizaciones deseadas de los pares de Lyapunov y conjuntos invariantes para inclusiones diferenciales con perturbaciones Lipschitz de operadores maximales monótonos, mientras que en el Capítulo 4, se investigan las inclusiones diferenciales con perturbaciones Lipschitz de conos normales proximales. Este capítulo incluye una aplicación al disenño de observadores de tipo Luenberger. En el Capítulo 5, se estudian inclusiones diferenciales con perturbaciones Lipschitz Cusco de operadores maximales monótonos. En el Capítulo 6, se entrega un resultado sobre la geometría de los operadores maximales monótonos, y se describe la frontera de sus valores. Finalmente, en el Capítulo 7 se da un resumen de los resultados obtenidos.
9

A discrete analogue of Maclaurin series

Khan, Mumtaz Ahmad 25 September 2017 (has links)
In the present paper a (p,q )-analytic function analogue of Maclaurin's series has been obtained.
10

On a generalization of Appell*s functions of two variables

Khan, Mumtaz Ahmad, Salama Abukhammash, Ghazi 25 September 2017 (has links)
The present paper introduces 10 Appell's type generalized functions Mᵢ, i = 1, 2, ... , 10 by considering the product of two 3F2 functions instead of product of two Gauss functions taken by Appell to define F1, F2 , F3 and F4 functions. In the concluding remark it has been pointed out that by considering the product of two nFn-1 functions a set of n² + n- 2 functions analogus to Appell functions will emerge. The paper contains fractional derivative representations, integral representations, symbolic forms and expansion formulae similar to those obtained by Burchnall and Chaundy for the four Appell's functions, have been obtained for these newly defined functions M1, M2 , … M10.

Page generated in 0.0716 seconds