Spelling suggestions: "subject:"funciones algebráicas"" "subject:"funciones algebraicas""
1 |
On a generalization of Appell*s functions of two variablesKhan, Mumtaz Ahmad, Salama Abukhammash, Ghazi 25 September 2017 (has links)
The present paper introduces 10 Appell's type generalized functions Mᵢ, i = 1, 2, ... , 10 by considering the product of two 3F2 functions instead of product of two Gauss functions taken by Appell to define F1, F2 , F3 and F4 functions. In the concluding remark it has been pointed out that by considering the product of two nFn-1 functions a set of n² + n- 2 functions analogus to Appell functions will emerge. The paper contains fractional derivative representations, integral representations, symbolic forms and expansion formulae similar to those obtained by Burchnall and Chaundy for the four Appell's functions, have been obtained for these newly defined functions M1, M2 , … M10.
|
2 |
Raíces p-ádicas de la unidadMas Huamán, Ronald Jesús 23 November 2015 (has links)
El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. Este repaso nos permitirá realizar un correcto manejo del grado de clases residuales y índice de ramificación, conceptos estrechamente relacionadas con el grado de la extensión. A partir de allí, en el Capítulo 3 concentramos nuestra atención en los números p-ádicos. Nos valdremos de algunos resultados expuestos en la tesis de maestría de Jos´e Condori [2], sobre todo en lo referente a las propiedades elementales de los números p-ádicos. Como caso especial estudiaremos las raíces p-ádicas de la unidad en Qp y también mostraremos las extensiones cuadráticas que se pueden construir. Es bien sabido que hallar una extensión cuadrática equivale a resolver la ecuación x 2 − a = 0 con a ∈ Qp. En el Capítulo 4 completamos el estudio de las propiedades algebraicas de las 1 raíces p-ádicas de la unidad y las separamos en dos subgrupos µ(p)(K) y µ(p∞)(K), los mismos que son las raíces de orden coprimo con p y raíces de orden una potencia de un primo. Por muy simple que parezca, esta agrupación de las raíces nos permitirá una clasificación de ciertas extensiones p-ádicas. Finalmente, es grato resaltar al Doctor Alfredo Poirier por su paciencia en la asesoría brindada para la elaboración de esta tesis. / Tesis
|
3 |
Teoría de códigos sobre curvas algebraicas y aplicación de las bases de GröbnerSalinas Encinas, Aldo Arquimedes 19 January 2021 (has links)
En la época que estamos viviendo, el manejo de la información toma una presencia muy importante en la toma de decisiones. La teoría de códigos surge en el mejoramiento de la transmisión de datos, desde las primeras computadoras hasta las súper computadoras que tenemos hoy en día; no pasó mucho tiempo para que se establecieran las bases teóricas que sustentaran el desarrollo vertiginoso que se ha dado hasta hoy.
Empezando como simples subconjuntos, los códigos cobraron fuerza al ser vistos como subespacios vectoriales de dimensión finita. Lógicamente, al estar íntimamente ligadas el ´algebra con la geometría; no es de extrañarse el surgimiento, con la ayuda de la teoría de cuerpo de funciones algebraicas, de los códigos algebro-geométricos o mejor conocidos como códigos de Goppa.
La teoría de códigos es una gran área de investigación, que con ayuda de la tecnología se complementan en busca de mejoras.
En este trabajo de tesis, estudiaremos los códigos algebro-geométricos para la codificación y la aplicación de las bases de Gröbner para la decodificación de los mismos. / At the time that we are living, information management takes a very important
presence in decision making. Code theory arises in the improvement of the
transmission of data, from the first computers to the super computers we have
today; it didn’t take long for me to know establish the theoretical bases that would
sustain the vertiginous development that has given until today.
Starting as simple subsets, the codes gained momentum when viewed as finitedimensional
vector subspaces. Logically, being intimately linked algebra with
geometry; no wonder the emergence, with the help of the field theory of algebraic
functions, of the algebro-geometric codes or better known as Goppa codes.
The theory of codes is a large area of research, which with the help of tecnology,
they complement each other in search of improvements.
In this thesis work, we’ll study the alegbro-geometric codes for the coding and the
application of bases Gr¨obner for the decoding of them. / Tesis
|
4 |
Raíces p-ádicas de la unidadMas Huamán, Ronald Jesús 23 November 2015 (has links)
El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. Este repaso nos permitirá realizar un correcto manejo del grado de clases residuales y índice de ramificación, conceptos estrechamente relacionadas con el grado de la extensión. A partir de allí, en el Capítulo 3 concentramos nuestra atención en los números p-ádicos. Nos valdremos de algunos resultados expuestos en la tesis de maestría de Jos´e Condori [2], sobre todo en lo referente a las propiedades elementales de los números p-ádicos. Como caso especial estudiaremos las raíces p-ádicas de la unidad en Qp y también mostraremos las extensiones cuadráticas que se pueden construir. Es bien sabido que hallar una extensión cuadrática equivale a resolver la ecuación x 2 − a = 0 con a ∈ Qp. En el Capítulo 4 completamos el estudio de las propiedades algebraicas de las 1 raíces p-ádicas de la unidad y las separamos en dos subgrupos µ(p)(K) y µ(p∞)(K), los mismos que son las raíces de orden coprimo con p y raíces de orden una potencia de un primo. Por muy simple que parezca, esta agrupación de las raíces nos permitirá una clasificación de ciertas extensiones p-ádicas. Finalmente, es grato resaltar al Doctor Alfredo Poirier por su paciencia en la asesoría brindada para la elaboración de esta tesis. / Tesis
|
Page generated in 0.0845 seconds