Spelling suggestions: "subject:"números ádicos"" "subject:"números diádicos""
1 |
Números p-ádicos transcendentes e séries de racionais que convergem em qualquer complemento de QHoffmann, Gertrudes Regina Todeschini January 2000 (has links)
Quando tomamos o valor absoluto usual e o completamento de Q em relação à métrica induzida por ele, o resultado é o corpo IR dos números reais; fazendo o mesmo processo com qualquer outro valor absoluto definido em Q, obtemos um dos corpos p-ádicos QP. O propósito deste trabalho é explorar a convergência de séries em QP e em IR, construindo algumas séries de números racionais com propriedades de convergência surpreendentes. Provamos também que é possível construir uma série de números racionais que converge em qualquer completamento de Q para um valor pré-fixado de Q e de R. / When we consider the completion of Q with respect to the usual absolute value we obtain the field of the real numbers R But if we do the same with respect to any other absolute value of Q we obtain the field of the p -adie numbers QP, where p is a prime. In this work we consider the convergence of series in QP and in lR and construct series of racional numbers with amazing convergence properties. We also prove that it is possible to obtain a series of rational numbers that converges in all completions of Q even if we prescribe its sum in each completion.
|
2 |
Números p-ádicos transcendentes e séries de racionais que convergem em qualquer complemento de QHoffmann, Gertrudes Regina Todeschini January 2000 (has links)
Quando tomamos o valor absoluto usual e o completamento de Q em relação à métrica induzida por ele, o resultado é o corpo IR dos números reais; fazendo o mesmo processo com qualquer outro valor absoluto definido em Q, obtemos um dos corpos p-ádicos QP. O propósito deste trabalho é explorar a convergência de séries em QP e em IR, construindo algumas séries de números racionais com propriedades de convergência surpreendentes. Provamos também que é possível construir uma série de números racionais que converge em qualquer completamento de Q para um valor pré-fixado de Q e de R. / When we consider the completion of Q with respect to the usual absolute value we obtain the field of the real numbers R But if we do the same with respect to any other absolute value of Q we obtain the field of the p -adie numbers QP, where p is a prime. In this work we consider the convergence of series in QP and in lR and construct series of racional numbers with amazing convergence properties. We also prove that it is possible to obtain a series of rational numbers that converges in all completions of Q even if we prescribe its sum in each completion.
|
3 |
Números p-ádicos transcendentes e séries de racionais que convergem em qualquer complemento de QHoffmann, Gertrudes Regina Todeschini January 2000 (has links)
Quando tomamos o valor absoluto usual e o completamento de Q em relação à métrica induzida por ele, o resultado é o corpo IR dos números reais; fazendo o mesmo processo com qualquer outro valor absoluto definido em Q, obtemos um dos corpos p-ádicos QP. O propósito deste trabalho é explorar a convergência de séries em QP e em IR, construindo algumas séries de números racionais com propriedades de convergência surpreendentes. Provamos também que é possível construir uma série de números racionais que converge em qualquer completamento de Q para um valor pré-fixado de Q e de R. / When we consider the completion of Q with respect to the usual absolute value we obtain the field of the real numbers R But if we do the same with respect to any other absolute value of Q we obtain the field of the p -adie numbers QP, where p is a prime. In this work we consider the convergence of series in QP and in lR and construct series of racional numbers with amazing convergence properties. We also prove that it is possible to obtain a series of rational numbers that converges in all completions of Q even if we prescribe its sum in each completion.
|
4 |
Completitud y clausura algebraica de campos P-ádicosRojas Orbegoso, Jorge Luis, Rojas Orbegoso, Jorge Luis January 2016 (has links)
El documento digital no refiere asesor / Presenta la definición de valor absoluto y cuerpo valuado y realiza una demostración de sus propiedades y consecuencias, se apoya en conceptos topológicos y algebraicos. Construye campos de extensión de Q usando los valores absolutos P-ádicos y para cada campo construído se responde a si es algebraicamente cerrado, completo, esféricamente completo, localmente compacto y segundo numerable, así como qué tipo de cardinal tiene y cuál es un subconjunto numerable denso. / Trabajo de suficiencia profesional
|
5 |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variablesCastillo García, Alberto Alonso 14 November 2016 (has links)
El objetivo principal de este trabajo es concluir la prueba del teorema de Hasse- Minkowsky (de manera específica, los casos n = 4 y n ≥ 5) iniciada en mi tesis de pregrado [2]. Adicionalmente, regresaremos a resultados cuya prueba quedó pendiente en aquella tesis. Es más, como gran parte de las definiciones y resultados que necesitamos se encuentran ahí, haremos múltiples referencias a [2] a lo largo de este trabajo. En el primer capítulo nos ocuparemos del teorema de Chevalley, pero principalmente buscamos cómo relacionar este resultado con el lema de Hensel. Ello nos permitirá obtener un mecanismo para encontrar condiciones bajo las cuales una forma cuadrática representa a cero. La ventaja de semejante desarrollo reside en que solo se necesita trabajar con ecuaciones sobre cuerpos finitos (en este caso Z/pZ), en donde encontrar soluciones resulta menos laborioso que en Qp. En el segundo capítulo definimos el símbolo de Legendre, una herramienta necesaria para la prueba de la bimultiplicidad del símbolo de Hilbert (resultado que quedó pendiente en la tesis de pregrado). Como aplicación del concepto y propiedades del símbolo de Legendre probaremos la ley de reciprocidad cuadrática, la cual es útil por mérito propio. En el tercer capítulo probaremos la bimultiplicidad del símbolo de Hilbert, el primer resultado de relevancia en esta tesis. Lo que en realidad haremos será establecer una fórmula que nos permita hallar el símbolo de Hilbert de cualquier par de números p-´adicos; a partir de ´esta, la bimultiplicidad del símbolo resulta obvia. Cerramos el capítulo con la prueba de una proposición que verá utilidad cuando se ataque el teorema de Hasse-Minkowsky. En el cuarto capítulo exhibiremos algunas propiedades topológicas del cuerpo Qp. La más notable es el teorema de aproximación débil, que será utilizado para tratar el teorema central. En el quinto capítulo trabajaremos con símbolos de Hilbert aplicados al cuerpo global Q. Además, se probará un segundo resultado de relevancia, la fórmula producto de Hilbert. Luego se desarrollarán ejemplos ilustrativos sobre ecuaciones y sistemas de ecuaciones con símbolos de Hilbert, lo que dará lugar a un resultado auxiliar que será empleado en la prueba del teorema de Hasse-Minkowsky. El sexto capítulo es básicamente una extensión del capítulo5 de [2]. Nos limitamos a presentar algunos resultados adicionales y a probar una proposición que quedó pendiente en [2]. En el sétimo capítulo concluimos la prueba del teorema de Hasse-Minkowsky para los casos n = 4 y n ≥ 5. El octavo y último capítulo es aplicativo. Utilizaremos el teorema de Hasse- Minkowsky para clasificar formas cuadráticas sobre los racionales. / Tesis
|
6 |
Raíces p-ádicas de la unidadMas Huamán, Ronald Jesús 23 November 2015 (has links)
El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. Este repaso nos permitirá realizar un correcto manejo del grado de clases residuales y índice de ramificación, conceptos estrechamente relacionadas con el grado de la extensión. A partir de allí, en el Capítulo 3 concentramos nuestra atención en los números p-ádicos. Nos valdremos de algunos resultados expuestos en la tesis de maestría de Jos´e Condori [2], sobre todo en lo referente a las propiedades elementales de los números p-ádicos. Como caso especial estudiaremos las raíces p-ádicas de la unidad en Qp y también mostraremos las extensiones cuadráticas que se pueden construir. Es bien sabido que hallar una extensión cuadrática equivale a resolver la ecuación x 2 − a = 0 con a ∈ Qp. En el Capítulo 4 completamos el estudio de las propiedades algebraicas de las 1 raíces p-ádicas de la unidad y las separamos en dos subgrupos µ(p)(K) y µ(p∞)(K), los mismos que son las raíces de orden coprimo con p y raíces de orden una potencia de un primo. Por muy simple que parezca, esta agrupación de las raíces nos permitirá una clasificación de ciertas extensiones p-ádicas. Finalmente, es grato resaltar al Doctor Alfredo Poirier por su paciencia en la asesoría brindada para la elaboración de esta tesis. / Tesis
|
7 |
Solubilidade de sistemas de equações aditivas sobre o corpo dos números p-ádicos com uma restrição sobre p / Solubility of systems of additive equations in p-adic fields with a restriction about pVeras, Daiane Soares 21 March 2013 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-18T20:04:19Z
No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Há problemas nos campos de palavras chaves e citação.
11º. Palavras chaves só use a primeira letra maiúscula de cada palavra chave, e caso não tenha unitermo no resumo use as palavras chaves da ficha catalográfica, mas como unitermo, ou seja, palavras isoladas. Coloque, também, o correspondente das palavras chaves em inglês, a menos que não tenha na dissertação ou tese
Ex.: Controle de qualidade
Atividade antimicrobiana
Qualitycontrol
Antimicrobial activity
A citação tem que ser adequada a NBR 6023. Ex.:
ALCÂNTARA, Guizelle Aparecida de. Caracterização farmacognostica e atividade antimicrobiana da folha e casca do caule da myrciarostratadc.(myrtaceae). 2012. 41 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2012.
on 2014-09-19T13:15:04Z (GMT) / Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-22T18:09:15Z
No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-22T19:11:21Z (GMT) No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-22T19:11:21Z (GMT). No. of bitstreams: 2
DISSERT.CORRETA.DAI.pdf: 1217710 bytes, checksum: dd809f01ecd6c0000cfa17badb034cf1 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-03-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based on articles by Atkinson, and Cook Brüdern [2] and I. D. Meir [15]
treating solubility p-adic nontrivial of the systems for additive equations of degree k
in n variables. Using techniques of the exponential sums we will see that to ensure the
solubility nontrivial of such systems when p > k2r+2, then 2rk + 1 variables will be
sufficient. When p > r2k2+2/(c−2) e r 6= 1 then n > crk variables are sufficient. In the
case where r = 1 we assure solubility nontrivial p-adic for every p > k2+2/(c−1). / Este trabalho é baseado nos artigos de Atkinson, Brüdern e Cook [2] e I. D. Meir [15]
que tratam de solubilidade p-ádica não trivial para sistemas de equações aditivas de grau
k em n variáveis. Usando técnicas de somas exponenciais veremos que para garantir a
solubilidade não trivial de tais sistemas quando p > k2r+2, então 2rk+1 variáveis serão
suficientes. Quando p > r2k2+2/(c−2) e r 6= 1 então n > crk variáveis são suficientes. No
caso em que r = 1 garantimos a solublidade não trivial p-ádica para todo p > k2+2/(c−1).
|
8 |
Raíces p-ádicas de la unidadMas Huamán, Ronald Jesús 23 November 2015 (has links)
El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. Este repaso nos permitirá realizar un correcto manejo del grado de clases residuales y índice de ramificación, conceptos estrechamente relacionadas con el grado de la extensión. A partir de allí, en el Capítulo 3 concentramos nuestra atención en los números p-ádicos. Nos valdremos de algunos resultados expuestos en la tesis de maestría de Jos´e Condori [2], sobre todo en lo referente a las propiedades elementales de los números p-ádicos. Como caso especial estudiaremos las raíces p-ádicas de la unidad en Qp y también mostraremos las extensiones cuadráticas que se pueden construir. Es bien sabido que hallar una extensión cuadrática equivale a resolver la ecuación x 2 − a = 0 con a ∈ Qp. En el Capítulo 4 completamos el estudio de las propiedades algebraicas de las 1 raíces p-ádicas de la unidad y las separamos en dos subgrupos µ(p)(K) y µ(p∞)(K), los mismos que son las raíces de orden coprimo con p y raíces de orden una potencia de un primo. Por muy simple que parezca, esta agrupación de las raíces nos permitirá una clasificación de ciertas extensiones p-ádicas. Finalmente, es grato resaltar al Doctor Alfredo Poirier por su paciencia en la asesoría brindada para la elaboración de esta tesis. / Tesis
|
9 |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variablesCastillo García, Alberto Alonso 14 November 2016 (has links)
El objetivo principal de este trabajo es concluir la prueba del teorema de Hasse- Minkowsky (de manera específica, los casos n = 4 y n ≥ 5) iniciada en mi tesis de pregrado [2]. Adicionalmente, regresaremos a resultados cuya prueba quedó pendiente en aquella tesis. Es más, como gran parte de las definiciones y resultados que necesitamos se encuentran ahí, haremos múltiples referencias a [2] a lo largo de este trabajo. En el primer capítulo nos ocuparemos del teorema de Chevalley, pero principalmente buscamos cómo relacionar este resultado con el lema de Hensel. Ello nos permitirá obtener un mecanismo para encontrar condiciones bajo las cuales una forma cuadrática representa a cero. La ventaja de semejante desarrollo reside en que solo se necesita trabajar con ecuaciones sobre cuerpos finitos (en este caso Z/pZ), en donde encontrar soluciones resulta menos laborioso que en Qp. En el segundo capítulo definimos el símbolo de Legendre, una herramienta necesaria para la prueba de la bimultiplicidad del símbolo de Hilbert (resultado que quedó pendiente en la tesis de pregrado). Como aplicación del concepto y propiedades del símbolo de Legendre probaremos la ley de reciprocidad cuadrática, la cual es útil por mérito propio. En el tercer capítulo probaremos la bimultiplicidad del símbolo de Hilbert, el primer resultado de relevancia en esta tesis. Lo que en realidad haremos será establecer una fórmula que nos permita hallar el símbolo de Hilbert de cualquier par de números p-´adicos; a partir de ´esta, la bimultiplicidad del símbolo resulta obvia. Cerramos el capítulo con la prueba de una proposición que verá utilidad cuando se ataque el teorema de Hasse-Minkowsky. En el cuarto capítulo exhibiremos algunas propiedades topológicas del cuerpo Qp. La más notable es el teorema de aproximación débil, que será utilizado para tratar el teorema central. En el quinto capítulo trabajaremos con símbolos de Hilbert aplicados al cuerpo global Q. Además, se probará un segundo resultado de relevancia, la fórmula producto de Hilbert. Luego se desarrollarán ejemplos ilustrativos sobre ecuaciones y sistemas de ecuaciones con símbolos de Hilbert, lo que dará lugar a un resultado auxiliar que será empleado en la prueba del teorema de Hasse-Minkowsky. El sexto capítulo es básicamente una extensión del capítulo5 de [2]. Nos limitamos a presentar algunos resultados adicionales y a probar una proposición que quedó pendiente en [2]. En el sétimo capítulo concluimos la prueba del teorema de Hasse-Minkowsky para los casos n = 4 y n ≥ 5. El octavo y último capítulo es aplicativo. Utilizaremos el teorema de Hasse- Minkowsky para clasificar formas cuadráticas sobre los racionales. / Tesis
|
10 |
Conjectura de Artin: um estudo sobre pares de formas aditivas / Artin´s conjecture: a study of pairs of additive formsCamacho, Adriana Marcela Fonce 22 August 2014 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-03-10T17:35:32Z
No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-14T14:08:40Z (GMT) No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-03-14T14:08:40Z (GMT). No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-08-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based mainly on the Brunder and Godinho article [2] which shows proof of
the conjecture of Artin methods using p-adic, although the conjecture is stated on the real
numbers which makes the proof is show an equivalence on the field of the number p-adic
method with the help of colored variables ya contraction of variables so as to prove the
statement, taking the first level and ensuring a nontrivial solution in the following levels. / Este trabalho é baseado principalmente no artigo de Brunder e Godinho [2] o qual mostra
a prova da conjetura de Artin usando métodos p-ádicos, ainda que a conjetura se afirma
sobre o números reais o que faz a prova é mostrar uma equivalência sobre o corpo dos
número p-ádicos com ajuda do método de variáveis coloridas e a contração de variáveis
para assim provar a afirmação, tomando o primeiro nível e assim garantindo uma solução
não trivial nos níveis seguintes.
|
Page generated in 0.0748 seconds