Spelling suggestions: "subject:"conjectura dde artin"" "subject:"conjectura dde crtin""
1 |
Formas aditivas sobre corpos p-ádicosVeras, Daiane Soares 31 March 2017 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-20T16:20:27Z
No. of bitstreams: 1
2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-08-22T18:33:23Z (GMT) No. of bitstreams: 1
2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) / Made available in DSpace on 2017-08-22T18:33:23Z (GMT). No. of bitstreams: 1
2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5)
Previous issue date: 2017-08-22 / Davenport e Lewis provaram uma versão da Conjectura de Artin que diz que, denotando por Γ* (k , p) o menor número de variáveis para o qual uma forma aditiva com coeficientes inteiros e grau k possui solução p−ádica não trivial, onde p é um número primo, então Γ* (k , p) ≤ k 2 +1 e a igualdade acontece quando p = k+1. Sabe-se que, em geral, quando k + 1 é composto essa cota é suficiente, mas não é necessária. Nessa tese melhoramos a cota dada pela conjectura e obtemos o número exato de variáveis necessárias para garantir a solubilidade p-ádica não trivial de uma forma aditiva de grau k com coeficientes inteiros, sempre que p − 1 divide k. Mais precisamente, escrevendo k = γq + r onde γ depende do grau k e0 ≤ r ≤ γ − 1, provamos que Γ* (k , p)≤( p γ−1) q+ p r , e a igualdade vale para os primos p tais que p − 1 divide k. Como aplicação desse resultado, mostramos que, se k = 54, então 1049 variáveis são suficientes para garantir a solubilidade p-ádica não trivial para todo p. Para k = 24, M. P. Knapp mostrou que são necessárias 289 variáveis para garantir a solubilidade p-ádica não trivial para todo p, entretanto, ainda como aplicação do resultado citado acima, provamos que, se p ≠ 13, então 140 variáveis são suficientes para garantir a solubilidade desejada. Além disso, encontramos o valor exato de Γ* (10 , p) para cada p primo. / Davenport and Lewis have proved a version of Artin’s Conjecture wich states that, denoting by Γ* (k , p) the least number of variables for wich an additive form with integer coefficients and degree k has a nontrivial p-adic solution, where p is a prime number, then Γ* (k , p)≤ k 2 +1 and the equality occurs when p = k + 1. It is known that in general when k + 1 is composite this bound is sufficient but it is not necessary. In this work we improve the conjecture´s bound and give the exact number of necessary variables to states that an additive form with integers coefficients and degree k has a nontrivial p-adic solution, since p − 1 divide k. More precisely, writing k = γq + r with γ depending of degree k and 0 ≤ r ≤ γ − 1, then Γ* (k , p)≤ ( p γ−1) q+ p r , and the equality occurs when p − 1 divide k. As an application of this result we show that, if k = 54, then 1049 variables are sufficient to ensure the nontrivial p-adic solubility for all p. For k = 24, M. P. Knapp has proved that 289 variables are necessary to ensure the nontrivial p-adic solution for all p, however, still as an application of the previous result, we show that, if p ≠ 13, then 140 variables are sufficient to ensure de solubility desired. Moreover, we give the exact value to Γ* (10, p ) for each prime p.
|
2 |
Diagonal forms over the unramified quadratic extension of Q2Miranda, Bruno de Paula 09 March 2018 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-04T19:56:19Z
No. of bitstreams: 1
2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-09T17:43:26Z (GMT) No. of bitstreams: 1
2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) / Made available in DSpace on 2018-07-09T17:43:26Z (GMT). No. of bitstreams: 1
2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5)
Previous issue date: 2018-07-04 / Em 1963, e Lewis provaram que se a forma diagonal F(x) = a1xd1 +...+ aNxdN com coeficientes em Qp, o corpo dos números p-ádicos, satisfazer N > d2, então existe solução não trivial para F(x) = 0. Muito estudo tem sido realizado afim de generalizar esse resultado para extensões finitas de Qp. Aqui, estudamos o caso F(x) 2 K[x] com K sendo a extensão quadrática não ramificada de Q2 e provamos dois resultados: Se d não _e potência de 2, então N > d2 garante a existência de solucão não trivial para F(x) = 0. Além disso, se d = 6, N = 29 garante existência de solucão não trivial para F(x) = 0. / In 1963, Davenport and Lewis proved that if the diagonal form F(x) = a1xd1 +...+ aNxdN with coeficients in Qp, the field of p-adic numbers, satisfies N > d2, then there exists non-trivial solution for F(x) = 0. Since then, there has been a lot of study in order to generalize this result to finite extensions of Qp. Here, we study the case F(x) 2 K[x] where K is the quadratic unramified extension of Q2 and we prove two results: if d is not a power of 2 , then N > d2 guarantees non-trivial solution for F(x) = 0. Furthermore, if d = 6, N = 29 guarantees non-trivial solution for F(x) = 0.
|
3 |
Conjectura de Artin: um estudo sobre pares de formas aditivas / Artin´s conjecture: a study of pairs of additive formsCamacho, Adriana Marcela Fonce 22 August 2014 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-03-10T17:35:32Z
No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-03-14T14:08:40Z (GMT) No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-03-14T14:08:40Z (GMT). No. of bitstreams: 2
Dissertação - Adriana Marcela Fonce Camacho - 2014.pdf: 981401 bytes, checksum: a14522ebe9ae77cf599946d25752f8b4 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-08-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based mainly on the Brunder and Godinho article [2] which shows proof of
the conjecture of Artin methods using p-adic, although the conjecture is stated on the real
numbers which makes the proof is show an equivalence on the field of the number p-adic
method with the help of colored variables ya contraction of variables so as to prove the
statement, taking the first level and ensuring a nontrivial solution in the following levels. / Este trabalho é baseado principalmente no artigo de Brunder e Godinho [2] o qual mostra
a prova da conjetura de Artin usando métodos p-ádicos, ainda que a conjetura se afirma
sobre o números reais o que faz a prova é mostrar uma equivalência sobre o corpo dos
número p-ádicos com ajuda do método de variáveis coloridas e a contração de variáveis
para assim provar a afirmação, tomando o primeiro nível e assim garantindo uma solução
não trivial nos níveis seguintes.
|
4 |
Conjectura de Artin para pares de formas aditivas de grau 6 / Artin’s conjecture for pairs of additive sextic formsCelis Cerón, M.A 25 April 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-05T10:05:56Z
No. of bitstreams: 2
Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T10:59:19Z (GMT) No. of bitstreams: 2
Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-05T10:59:19Z (GMT). No. of bitstreams: 2
Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-04-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Celis Cerón, Mónica Andrea. Artin’s conjecture for pairs of additive sextic forms. Goiânia, 2014. 62p. MSc. Dissertation. Instituto de Matemática e Estatística, Universidade Federal de Goiás.
Consider the system of equations
a1xk1+ a2xk2+ + asxks= 0;
b1xk1+ b2xk2+ + bsxks= 0;
where a1; a2; ; as; b1; b2; ; bs 2 Z
A special case of Artin’s conjecture states that the above system must have nontrivial
solutions in every p-adic field, Qp, provided only that s 2k2+ 1. In this text we show
that the conjecture is true when k = 6. / Celis Cerón, Mónica Andrea. Conjectura de Artin para pares de formas aditivas de grau 6. Goiânia, 2014. 62p. Dissertação de Mestrado. Instituto de Matemática e Estatística, Universidade Federal de Goiás.
Consideremos o sistema de equações
a1xk1+ a2xk2+...+ asxks= 0;
b1xk1+ b2xk2+ + bsxks= 0;
onde, a 1; a 2; ; as; b1; b2; ; bs 2 Z.
Um caso especial da conjectura de Artin nos diz que o sistema anterior tem solução não trivial em todo corpo p-ádico, Qp, sempre que s 2k2+ 1. Neste trabalho mostraremos que a conjectura é válida quando k = 6.
|
5 |
Condições de solubilidade p-ádica de pares de formas diagonais e alguns casos especiais / Conditions of p-adic solubility of pars of diagonal forms and some special casesFerreira, Alaídes Inácio Stival January 2009 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T13:53:45Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5) / Made available in DSpace on 2014-08-06T13:53:45Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5)
Previous issue date: 2009 / This text is above solvability in systems of two forms additive over p-adics fields: with
of degree k and variables n > 4k at lesat p > 3k4
; with of degree an k odd integer at least n > 6k+1 variables; and with of degree 5 and p > 101 for n ≥ 31 variables, and for all p
with n ≥ 36 variables, with the possible exceptions of p = 5 and p = 11. / Este texto é sobre solubilidade no corpo dos p-ádicos de sistemas de duas formas aditivas:
com grau k e variáveis n > 4k apartir de p > 3k4
; com grau k ímpar apartir de n > 6k +1
variáveis; e de grau 5 com p > 101 para n ≥ 31 variáveis, e para todo p com n ≥ 36
variáveis, com exceções de p = 5 e p = 11.
|
6 |
Uma confirmação da conjectura de Artin para pares de formas diagonais de graus 2 e 3Lelis, Jean Carlos Aguiar 10 November 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T11:32:36Z
No. of bitstreams: 2
Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T11:34:08Z (GMT) No. of bitstreams: 2
Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-05-19T11:34:08Z (GMT). No. of bitstreams: 2
Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-11-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we present some methods used in the study of systems of additive forms
on local fields, and a proof for a particular case of Artin’s Conjecture, which says that
every systems with R additive forms of degrees k1; :::;kR has non trivial p-adic solution
for any prime p, if the number s of variables is higher than k2
1 +k2
2 + +k2R, given by
Wooley [12], where he shows that G(3;2) = 11.
Keywords / Nesse trabalho, nós apresentamos alguns dos métodos usados no estudo de formas
aditivas sobre corpos locais, e uma prova para um caso particular da Conjectura de
Artin, que afirma que todo sistema de R formas aditivas de graus k1;k2; :::;kR possui
solução p-ádica não trivial para todo p primo, se o número s de variáveis for maior que
k2
1 +k2
2 + +k2R
, dada por Wooley [12], onde ele mostra que G(3;2) = 11.
|
Page generated in 0.0577 seconds