• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diagonal forms over the unramified quadratic extension of Q2

Miranda, Bruno de Paula 09 March 2018 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2018. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-04T19:56:19Z No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-07-09T17:43:26Z (GMT) No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) / Made available in DSpace on 2018-07-09T17:43:26Z (GMT). No. of bitstreams: 1 2018_BrunodePaulaMiranda.pdf: 934554 bytes, checksum: eee7a917cdecb7aa3b6c58ad0476d279 (MD5) Previous issue date: 2018-07-04 / Em 1963, e Lewis provaram que se a forma diagonal F(x) = a1xd1 +...+ aNxdN com coeficientes em Qp, o corpo dos números p-ádicos, satisfazer N > d2, então existe solução não trivial para F(x) = 0. Muito estudo tem sido realizado afim de generalizar esse resultado para extensões finitas de Qp. Aqui, estudamos o caso F(x) 2 K[x] com K sendo a extensão quadrática não ramificada de Q2 e provamos dois resultados: Se d não _e potência de 2, então N > d2 garante a existência de solucão não trivial para F(x) = 0. Além disso, se d = 6, N = 29 garante existência de solucão não trivial para F(x) = 0. / In 1963, Davenport and Lewis proved that if the diagonal form F(x) = a1xd1 +...+ aNxdN with coeficients in Qp, the field of p-adic numbers, satisfies N > d2, then there exists non-trivial solution for F(x) = 0. Since then, there has been a lot of study in order to generalize this result to finite extensions of Qp. Here, we study the case F(x) 2 K[x] where K is the quadratic unramified extension of Q2 and we prove two results: if d is not a power of 2 , then N > d2 guarantees non-trivial solution for F(x) = 0. Furthermore, if d = 6, N = 29 guarantees non-trivial solution for F(x) = 0.

Page generated in 0.0326 seconds