• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formas aditivas sobre corpos p-ádicos

Veras, Daiane Soares 31 March 2017 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. / Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-20T16:20:27Z No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-08-22T18:33:23Z (GMT) No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) / Made available in DSpace on 2017-08-22T18:33:23Z (GMT). No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) Previous issue date: 2017-08-22 / Davenport e Lewis provaram uma versão da Conjectura de Artin que diz que, denotando por Γ* (k , p) o menor número de variáveis para o qual uma forma aditiva com coeficientes inteiros e grau k possui solução p−ádica não trivial, onde p é um número primo, então Γ* (k , p) ≤ k 2 +1 e a igualdade acontece quando p = k+1. Sabe-se que, em geral, quando k + 1 é composto essa cota é suficiente, mas não é necessária. Nessa tese melhoramos a cota dada pela conjectura e obtemos o número exato de variáveis necessárias para garantir a solubilidade p-ádica não trivial de uma forma aditiva de grau k com coeficientes inteiros, sempre que p − 1 divide k. Mais precisamente, escrevendo k = γq + r onde γ depende do grau k e0 ≤ r ≤ γ − 1, provamos que Γ* (k , p)≤( p γ−1) q+ p r , e a igualdade vale para os primos p tais que p − 1 divide k. Como aplicação desse resultado, mostramos que, se k = 54, então 1049 variáveis são suficientes para garantir a solubilidade p-ádica não trivial para todo p. Para k = 24, M. P. Knapp mostrou que são necessárias 289 variáveis para garantir a solubilidade p-ádica não trivial para todo p, entretanto, ainda como aplicação do resultado citado acima, provamos que, se p ≠ 13, então 140 variáveis são suficientes para garantir a solubilidade desejada. Além disso, encontramos o valor exato de Γ* (10 , p) para cada p primo. / Davenport and Lewis have proved a version of Artin’s Conjecture wich states that, denoting by Γ* (k , p) the least number of variables for wich an additive form with integer coefficients and degree k has a nontrivial p-adic solution, where p is a prime number, then Γ* (k , p)≤ k 2 +1 and the equality occurs when p = k + 1. It is known that in general when k + 1 is composite this bound is sufficient but it is not necessary. In this work we improve the conjecture´s bound and give the exact number of necessary variables to states that an additive form with integers coefficients and degree k has a nontrivial p-adic solution, since p − 1 divide k. More precisely, writing k = γq + r with γ depending of degree k and 0 ≤ r ≤ γ − 1, then Γ* (k , p)≤ ( p γ−1) q+ p r , and the equality occurs when p − 1 divide k. As an application of this result we show that, if k = 54, then 1049 variables are sufficient to ensure the nontrivial p-adic solubility for all p. For k = 24, M. P. Knapp has proved that 289 variables are necessary to ensure the nontrivial p-adic solution for all p, however, still as an application of the previous result, we show that, if p ≠ 13, then 140 variables are sufficient to ensure de solubility desired. Moreover, we give the exact value to Γ* (10, p ) for each prime p.
2

Uma confirmação da conjectura de Artin para pares de formas diagonais de graus 2 e 3

Lelis, Jean Carlos Aguiar 10 November 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T11:32:36Z No. of bitstreams: 2 Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T11:34:08Z (GMT) No. of bitstreams: 2 Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-05-19T11:34:08Z (GMT). No. of bitstreams: 2 Dissertação - Jean Carlos A. Lelis - 2015.pdf: 735614 bytes, checksum: 4a7e9e89fe1b8a8d2fff12ead96e312d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-11-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we present some methods used in the study of systems of additive forms on local fields, and a proof for a particular case of Artin’s Conjecture, which says that every systems with R additive forms of degrees k1; :::;kR has non trivial p-adic solution for any prime p, if the number s of variables is higher than k2 1 +k2 2 + +k2R, given by Wooley [12], where he shows that G(3;2) = 11. Keywords / Nesse trabalho, nós apresentamos alguns dos métodos usados no estudo de formas aditivas sobre corpos locais, e uma prova para um caso particular da Conjectura de Artin, que afirma que todo sistema de R formas aditivas de graus k1;k2; :::;kR possui solução p-ádica não trivial para todo p primo, se o número s de variáveis for maior que k2 1 +k2 2 + +k2R , dada por Wooley [12], onde ele mostra que G(3;2) = 11.
3

Conjectura de Artin para pares de formas aditivas de grau 6 / Artin’s conjecture for pairs of additive sextic forms

Celis Cerón, M.A 25 April 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-05T10:05:56Z No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T10:59:19Z (GMT) No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-05T10:59:19Z (GMT). No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-04-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Celis Cerón, Mónica Andrea. Artin’s conjecture for pairs of additive sextic forms. Goiânia, 2014. 62p. MSc. Dissertation. Instituto de Matemática e Estatística, Universidade Federal de Goiás. Consider the system of equations a1xk1+ a2xk2+ + asxks= 0; b1xk1+ b2xk2+ + bsxks= 0; where a1; a2; ; as; b1; b2; ; bs 2 Z A special case of Artin’s conjecture states that the above system must have nontrivial solutions in every p-adic field, Qp, provided only that s 2k2+ 1. In this text we show that the conjecture is true when k = 6. / Celis Cerón, Mónica Andrea. Conjectura de Artin para pares de formas aditivas de grau 6. Goiânia, 2014. 62p. Dissertação de Mestrado. Instituto de Matemática e Estatística, Universidade Federal de Goiás. Consideremos o sistema de equações a1xk1+ a2xk2+...+ asxks= 0; b1xk1+ b2xk2+ + bsxks= 0; onde, a 1; a 2; ; as; b1; b2; ; bs 2 Z. Um caso especial da conjectura de Artin nos diz que o sistema anterior tem solução não trivial em todo corpo p-ádico, Qp, sempre que s 2k2+ 1. Neste trabalho mostraremos que a conjectura é válida quando k = 6.
4

Condições de solubilidade p-ádica de pares de formas diagonais e alguns casos especiais / Conditions of p-adic solubility of pars of diagonal forms and some special cases

Ferreira, Alaídes Inácio Stival January 2009 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T13:53:45Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5) / Made available in DSpace on 2014-08-06T13:53:45Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5) Previous issue date: 2009 / This text is above solvability in systems of two forms additive over p-adics fields: with of degree k and variables n > 4k at lesat p > 3k4 ; with of degree an k odd integer at least n > 6k+1 variables; and with of degree 5 and p > 101 for n ≥ 31 variables, and for all p with n ≥ 36 variables, with the possible exceptions of p = 5 and p = 11. / Este texto é sobre solubilidade no corpo dos p-ádicos de sistemas de duas formas aditivas: com grau k e variáveis n > 4k apartir de p > 3k4 ; com grau k ímpar apartir de n > 6k +1 variáveis; e de grau 5 com p > 101 para n ≥ 31 variáveis, e para todo p com n ≥ 36 variáveis, com exceções de p = 5 e p = 11.

Page generated in 0.04 seconds