• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conjectura de Artin para pares de formas aditivas de grau 6 / Artin’s conjecture for pairs of additive sextic forms

Celis Cerón, M.A 25 April 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-05T10:05:56Z No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T10:59:19Z (GMT) No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-05T10:59:19Z (GMT). No. of bitstreams: 2 Dissertaçao - Mónica Andrea Celis Cerón - 2014.pdf: 566862 bytes, checksum: b41da2ec2c63c537f6b78488d3d8c179 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-04-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Celis Cerón, Mónica Andrea. Artin’s conjecture for pairs of additive sextic forms. Goiânia, 2014. 62p. MSc. Dissertation. Instituto de Matemática e Estatística, Universidade Federal de Goiás. Consider the system of equations a1xk1+ a2xk2+ + asxks= 0; b1xk1+ b2xk2+ + bsxks= 0; where a1; a2; ; as; b1; b2; ; bs 2 Z A special case of Artin’s conjecture states that the above system must have nontrivial solutions in every p-adic field, Qp, provided only that s 2k2+ 1. In this text we show that the conjecture is true when k = 6. / Celis Cerón, Mónica Andrea. Conjectura de Artin para pares de formas aditivas de grau 6. Goiânia, 2014. 62p. Dissertação de Mestrado. Instituto de Matemática e Estatística, Universidade Federal de Goiás. Consideremos o sistema de equações a1xk1+ a2xk2+...+ asxks= 0; b1xk1+ b2xk2+ + bsxks= 0; onde, a 1; a 2; ; as; b1; b2; ; bs 2 Z. Um caso especial da conjectura de Artin nos diz que o sistema anterior tem solução não trivial em todo corpo p-ádico, Qp, sempre que s 2k2+ 1. Neste trabalho mostraremos que a conjectura é válida quando k = 6.

Page generated in 0.0514 seconds