• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Three Variable Analogue of Boas and Buck Type Generating Functions and Its Generalizations to M-Variables / Three Variable Analogue of Boas and Buck Type Generating Functions and Its Generalizations to M-Variables

Ahmad Khan, Mumtaz, Alidad, Bahman 25 September 2017 (has links)
The present papers deals with three variable analogue of Boas and Buck [14] type generating functions forpolynomials of two variables and then the same has been extended for m-variable analogue. The results obtained are extensions of those obtained by us in our earlier paper [14]. / El presente artículo trata el anólogo de tres variables de la función generatriz de Boas and Buck [14] para polinomios de dos variables y lo mismo se puede extender para el análogo de m variables. Los resultados obtenidos son extensiones de un artículo previo [14].
2

A study of modified Hermite polynomials of two variables / A study of modified Hermite polynomials of two variables

Ahmad Khan, Mumtaz, Hakim Khan, Abdul, Ahmad, Naeem 25 September 2017 (has links)
The present paper is a study of modied Hermite polynomials of two variables Hn(x; y; a) which for a = e reduces to Hermite polynomials of two variables Hn(x; y) due to M.A. Khan and G.S. Abukhammash. / El presente artculo se estudian polinomios modicados de Hermite de dos variables Hn(x; y; a) que para a = e se reducen a los polinomios de Hermite de dos variables Hn(x; y) introducidos por M.A. Khan y G.S.Abukhammash.

Page generated in 0.3003 seconds