• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 1
  • 1
  • Tagged with
  • 40
  • 39
  • 14
  • 12
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A geophysical study of the Bay of Fundy and Gulf of Maine /

Parrott, D. Russell January 1976 (has links)
No description available.
22

A geophysical study of the Bay of Fundy and Gulf of Maine /

Parrott, D. Russell January 1976 (has links)
No description available.
23

Geometry and composition of ice banks in a macrotidal channel

Black, CarolAnne 17 May 2013 (has links)
Large ice blocks containing enough sediment to be denser than sea water form in the Minas Basin of the Bay of Fundy. The timing of ice block formation and ice block composition were monitored to improve understanding of the potential threat to tidal power generators posed by collision with ice blocks. Large blocks are produced from ice cliffs that form when anchored ice obstructs tidal channels and decreases flow speed. Decreased flow causes the channel cross-sectional area to decrease. In 2012, the Kennetcook River cross- sectional area decreased by 21% due to the formation of ice cliffs. Large ice blocks separated from the walls during the two spring tides following a 20-day time lag of the minimum air temperature. Ten percent of sampled ice blocks were denser than freshwater. Four of twelve ice cores collected from the ice cliffs along the Kennetcook River contained enough sediment to become denser than seawater.
24

Seasonal variation and biological effects on mudflat erodibility in the Minas Basin, Bay of Fundy

Carrière-Garwood, Jessica 12 November 2013 (has links)
The goal of this study was to investigate the effects of intertidal mudflat biofilms on sediment erosion in the Minas Basin of the Bay of Fundy, Canada. From April through November 2012, sediment cores were collected biweekly and eroded using a Gust micro- cosm. Half of the cores were eroded without undergoing prior treatment, while the other half were treated with bleach prior to erosion to destroy biofilms. Size-specific sediment retention by biofilms was evaluated by comparing the disaggregated inorganic grain size (DIGS) distributions of sediment resuspended from untreated and treated cores, while seasonal variation in natural sediment erodibility was assessed by focusing on the mass eroded from untreated cores only. Results show that biofilms preferentially retained clays and very fine silts (< 10 μm), and that overall sediment erodibility decreased from spring to fall. Results also indicate that abundance of the infaunal amphipod Corophium volutator and rainfall increased sediment erodibility.
25

Bay of Fundy

Mackie, Carlin 01 January 2013 (has links) (PDF)
This is a novel about the way individuals can and do operate in a world controlled by larger power structures. It is interested in how people can effect change in this world, often in ways they do not plan. It explores the inability of the individual to control the world around them. The novel features a large cast of characters moving through a world that is dying. Earth’s climate is warming at a rate that will make it uninhabitable for humans. The specifics of this catastrophe are never explored. Rather, the novel concerns itself with people who are reacting to it, and how their reactions ultimately do more harm than good.
26

Transport and Destruction of Pelecypod Valves in the Minas Basin, Bay of Fundy

Szczuczko, Robert Bolek 05 1900 (has links)
<p> Processes affecting the transportation and destruction of empty valves of the pelecypods Mya arenaria and Macoma balthica, were examined within the intertidal zone off Portapique Beach in the Minas Basin(Bay of Fundy). It was found that valve transport was away from shore within channels and eastward alongshore on the flats. It was observed that the rate of transport of left valves and small valves was greater than right valves large valves respectively. Transported valves are preferential oriented by currents of the flood and ebb tides and those within intertidal channels. Channel migration does not appear to be of significance in removing empty valves from these intertidal sediments. The loss valves from within the sediment is attributed to an unknown 'escape' mechanism. Once free of the sediment, valves are transported, weakened by boring thallophytes and mechanically destroyed during transport.</p> / Thesis / Bachelor of Science (BSc)
27

Augmented Tidal Resonant System: Design for Uninterrupted Power Generation

Moreira, Tulio Marcondes 23 May 2016 (has links)
No description available.
28

Hydrodynamic Impacts of Tidal Lagoons in the Upper Bay of Fundy

Cousineau, Julien 16 July 2012 (has links)
Among sources of renewable energy, development of tidal energy has traditionally been plagued by relatively high costs and limited availability of sites with sufficiently high tidal amplitudes or flow velocities. However, many recent technology developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, crossflow turbines), showed that the economic and environmental costs may be brought down to competitive levels comparing to other conventional energy sources. It has long been identified that the Bay of Fundy is one of the world’s premier locations for the development of tidal power generating systems, since it has some of the world’s largest tidal ranges. Consequently, several proposals have been made in the recent years to find economical ways to harness the power of tides. Presently, there is considerable interest in installing tidal lagoons in the Bay of Fundy. The lagoon concept involves temporarily storing seawater behind an impoundment dike and generating power by gradually releasing the impounded seawater through conventional low-head hydroelectric turbines. A tidal lagoon will inherently modify the tides and tidal currents regime in the vicinity of the lagoon, and possibly induce effects that may be felt throughout the entire Bay of Fundy. The nature of these hydrodynamic impacts will likely depend on the size of the tidal lagoon, its location, and its method of operation. Any changes in the tidal hydrodynamics caused by a tidal lagoon may also impact on the transport of sediments throughout the region and upset ecosystems that are well adapted to existing conditions. The scale and character of the potential hydrodynamic impacts due to tidal lagoons operating in the Bay of Fundy have not been previously investigated. The present study endeavours to investigate these potential impacts to help the development of sustainable, science-based policies for the management and development of clean energy for future generations. After outlining fundamental aspects of tidal power projects taken in consideration in the Bay of Fundy, an analysis of present knowledge on tidal lagoons was conducted in order to provide a focus for subsequent investigations. Hydrodynamic modeling was used to quantify any of the potential hydrodynamic changes induced in the Bay of Fundy due to the presence of tidal lagoons. In the last part of the thesis, new relationships were derived in order to describe the amount of energy removed from tidal lagoons associated with its hydrodynamic impacts.
29

Hydrodynamic Impacts of Tidal Lagoons in the Upper Bay of Fundy

Cousineau, Julien 16 July 2012 (has links)
Among sources of renewable energy, development of tidal energy has traditionally been plagued by relatively high costs and limited availability of sites with sufficiently high tidal amplitudes or flow velocities. However, many recent technology developments and improvements, both in design (e.g. dynamic tidal power, tidal lagoons) and turbine technology (e.g. new axial turbines, crossflow turbines), showed that the economic and environmental costs may be brought down to competitive levels comparing to other conventional energy sources. It has long been identified that the Bay of Fundy is one of the world’s premier locations for the development of tidal power generating systems, since it has some of the world’s largest tidal ranges. Consequently, several proposals have been made in the recent years to find economical ways to harness the power of tides. Presently, there is considerable interest in installing tidal lagoons in the Bay of Fundy. The lagoon concept involves temporarily storing seawater behind an impoundment dike and generating power by gradually releasing the impounded seawater through conventional low-head hydroelectric turbines. A tidal lagoon will inherently modify the tides and tidal currents regime in the vicinity of the lagoon, and possibly induce effects that may be felt throughout the entire Bay of Fundy. The nature of these hydrodynamic impacts will likely depend on the size of the tidal lagoon, its location, and its method of operation. Any changes in the tidal hydrodynamics caused by a tidal lagoon may also impact on the transport of sediments throughout the region and upset ecosystems that are well adapted to existing conditions. The scale and character of the potential hydrodynamic impacts due to tidal lagoons operating in the Bay of Fundy have not been previously investigated. The present study endeavours to investigate these potential impacts to help the development of sustainable, science-based policies for the management and development of clean energy for future generations. After outlining fundamental aspects of tidal power projects taken in consideration in the Bay of Fundy, an analysis of present knowledge on tidal lagoons was conducted in order to provide a focus for subsequent investigations. Hydrodynamic modeling was used to quantify any of the potential hydrodynamic changes induced in the Bay of Fundy due to the presence of tidal lagoons. In the last part of the thesis, new relationships were derived in order to describe the amount of energy removed from tidal lagoons associated with its hydrodynamic impacts.
30

Seabird foraging in dynamic oceanographic features

Thorne, Lesley Helen January 2010 (has links)
<p>Oceanographic features, such as fronts, eddies, and upwellings, provide important foraging areas for marine predators. These areas serve as important "hotspots" of marine life, by aggregating weakly swimming lower and mid-trophic level species which, in turn, attract foraging predators. Despite the importance of these dynamic features, we lack a comprehensive understanding of how they create foraging habitat for seabirds and other marine predators. In the first part of this dissertation, I review current knowledge of how seabirds use oceanographic features with an emphasis on developing a more mechanistic understanding of these features, and identify important considerations for future studies. I use the findings of this review to inform two field research projects in the Bay of Fundy, Canada and Onslow Bay, North Carolina. In these two projects, I examined seabird abundance and distribution in relation to oceanographic features that occur at different spatial and temporal scales. In the first project, I examined foraging habitat of red-necked phalaropes (<italic>Phalaropus lobatus</italic>) in relation fine-scale tidal forcing near the Brier Island ledges in the Bay of Fundy. This research demonstrated the importance of biophysical interactions in creating phalarope habitat, and characterized red-necked phalarope habitat in both space and time. In Onslow Bay, I investigated the effects of Gulf Stream fronts and eddies on the abundance and distribution of seabirds using both remotely sensed and in situ data. I used fisheries acoustics surveys to investigate prey distribution within Gulf Stream frontal eddies. I then developed habitat models for the six most commonly sighted species or species groups (Cory's shearwaters, <italic>Calonectris diomedea</italic>; greater shearwaters (<italic>Puffinus gravis</italic>; Wilson's storm petrel, <italic>Oceanites oceanicus</italic>; Audubon's shearwaters, <italic>Puffinus lherminieri</italic>; black-capped petrels, <italic>Pterodrama hasitata</italic>; and red and red-necked phalaropes, grouped together as <italic>Phalaropus</italic> spp.) using multivariate modeling techniques. Gulf Stream frontal eddies influenced the abundance and distribution of seabirds in Onslow Bay, although frontal features were not as important in predicting seabird habitat as demonstrated in previous studies in the South Atlantic Bight. Prey availability in Gulf Stream frontal eddies was highest in eddy cold core regions, particularly in those regions close to the Gulf Stream. Taken together, the results of my dissertation: underscore the importance of conducting standardized surveys to assess dynamic environmental variables; demonstrate the use of multivariate methods to examine seabird foraging in relation to oceanographic features; emphasize the need to evaluate both prey distributions and physical regimes within oceanographic features at depth; and highlight the importance of temporal aspects of oceanographic features, such as the persistence and age of the features, when assessing the role that these features play in creating seabird foraging habitat.</p> / Dissertation

Page generated in 0.0287 seconds