• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The northern fur seal : biological relationships, ecological patterns and population management

Trites, Andrew W. January 1990 (has links)
Data collected from Pribilof far seals, Callorhinus ursinus, on land (1911-89) and at sea (1958-74) are analyzed to establish biological relationships and distinguish ecological patterns that are relevant to understanding and managing northern fur seal populations. The thesis follows the development of the fur seal from conception and birth through to sexual maturity and finally to a synthesis of the earlier material in terms of population regulation, management, and reasons for the decline of the Pribilof herd. Growth curves show that male fetuses grow faster and larger than female fetuses, and that fetal size is influenced by the age, size, and reproductive history of the mother. Juvenile and adult fur seals experience pronounced seasonal increases and decreases in body length and mass. Rapid gains in mass and growth occur during a brief 1-3 month period as the population migrates through the coastal waters of northern British Columbia and Alaska on its way to the Pribilof Islands. Body mass is gradually lost during the rest of the year while fasting on land and wintering along the coasts of Washington, Oregon, and California. The timing of migration and pupping is highly synchronized from year to year and may be related to the effect of climatic conditions on pup survival during the breeding season. Predictions from a thermal budget developed for pups and the results of a seasonal decomposition of weather patterns on the Pribilof Islands show that the synchronism of births in early July corresponds to the start of three months of conditions that are optimal for growth and survival of pups. Long term fluctuations are noted in pup mass and subadult growth rates which may be related to underlying, large scale natural changes in prey abundance. Changes in the physiological condition (body growth) and vital rates (survival and reproduction) are analyzed for the period 1911-89 as the population increased and decreased. Few density dependent relationships could be demonstrated. Two hypotheses concerning the current decline of the Pribilof population are reviewed and a new, third hypothesis is proposed. The thesis also examines biases in data collection related to the effects of tagging and the handling of fur seals and outlines some directions for future research. / Science, Faculty of / Zoology, Department of / Graduate
12

Recolonisation of the Robberg Peninsula by the Cape Fur Seal Arctocephalus pusillus pusillus and its prey preferences

Huisamen, Johan January 2012 (has links)
The Cape fur seal Arctocephalus pusillus pusillus colony at the Robberg Peninsula, Plettenberg Bay, on the south-east coast of South Africa, was driven to extirpation by indiscriminate harvesting by the late 1800s and seals only began to recolonise this site in the 1990s. This study describes the recolonisation process from 2000 to 2009, exploring within- and between-year variation in the number of seals using the site. Numbers increased over the study period from less than 300 animals to over 3 100. Year and month were important in explaining variability in seal counts, whereas sea condition, time of day and lunar phase had minimal explanatory power. Within-year variation in seal counts decreased during the study period, which may indicate an increasing proportion of resident (as opposed to transient) seals in the colony. However, the colony is currently still in a transition phase with a low ratio of breeding to non-breeding animals and low numbers of pups born on the colony (currently still < 100 per year). The influx of seals to the Robberg area may be associated with an increase in prey availability in the area. The relative protection afforded by the Nature Reserve status of the Robberg Peninsula and the existence of a Marine Protected Area adjacent to it are likely to contribute to the growth of this colony. However, human interference associated with fishing and/or ecotourism on the Peninsula may prevent the colony from developing into a breeding colony. Faecal (scat) sampling was employed to study the diet of this increasing seal population at Robberg. Species composition and size of prey were determined, temporal variation in the diet was explored, and the potential for competition between seals and the fisheries around Plettenberg Bay was investigated. Of the 445 scats collected, 90 % contained hard prey remains. These comprised of 3 127 identified otoliths representing 15 teleost prey species, 25 cephalopod beaks representing three 6 species and three feathers representing two bird species. The seals' most important prey species in terms of numerical abundance and frequency of occurrence in the diet were anchovy, sardine, horse mackerel, sand tongue-fish and shallow-water hake (in decreasing order of importance). The proportion of anchovy in the diet increased during the study period, while sardine decreased. Sardine was the only species that increased significantly in the diet during the upwelling season. Little evidence was found of direct competition between seals and linefisheries in Plettenberg Bay, both in terms of prey species composition and quantities consumed. Scat sampling in seals holds promise as a method to track long-term changes in prey species availability. The conservation and management of this colony are discussed in light of the research findings.
13

Seasonal and colony differences in the foraging ecology of New Zealand fur seals (Arctocephalus forsteri).

Baylis, Alastair M.M. January 2008 (has links)
The New Zealand fur seal (Arctocephalus forsteri) is the most abundant fur seal species in the Australian-New Zealand region. Approximately 85 % of Australia’s population of New Zealand fur seals reside in the state of South Australia. As a result of their abundance and size, it has been estimated that the New Zealand fur seal population in South Australia consumes the greatest biomass of resources of all marine mammal and seabird species. However, despite the importance of New Zealand fur seals as top predators, our understanding of their foraging ecology in South Australia is limited. In order to better understand the habitat utilized and the diet of New Zealand fur seals, this study explores the foraging ecology of lactating seals from four primary colonies in South Australia, which account for ~ 78 % of the Australian population. These colonies are Cape Gantheaume (36о04’S, 137о27’E) and Cape du Couedic (36о03’S, 136о42’E) on Kangaroo Island; North Neptune Island (35о13’S, 136о03’E) and Liguanea Island (34о59’S, 135о37’E). I start this study by assessing the seasonal variation in foraging location and dive behaviour of lactating New Zealand fur seals from Cape Gantheaume. 18 seals were fitted with satellite transmitters and time depth recorders (TDRs). The presence of thermoclines (derived from TDRs), were used as a surrogate measure of upwelling activity in continental shelf habitats. During the austral autumn 80 % of lactating fur seals foraged on the continental shelf (114 ± 44 km from the colony), in a region associated with a seasonal coastal upwelling system, the Bonney upwelling. In contrast, during winter months seals predominantly foraged in oceanic waters (62 %), in a region associated with the Subtropical Front (460 ± 138 km from the colony). Results suggested that lactating New Zealand fur seals shift their foraging location from continental shelf to oceanic habitats, in response to a seasonal decline in continental shelf productivity, attributed to the cessation of the Bonney upwelling in autumn. To study inter-colony differences in foraging locations, 21 New Zealand fur seals were satellite tracked from four colonies within close proximity (46 km – 200km apart). Seals initiated foraging trips on a colony-specific bearing (Cape Gantheaume 141 ± 33º, Cape du Couedic 186 ± 12º, North Neptune Island 200 ± 23º and Liguanea Island 234 ± 69º), and recorded little overlap between colony-specific foraging areas. The distribution of colony-specific foraging grounds appeared to be influenced by the proximity of colonies to predictable local upwelling features, as well as a distant oceanic frontal zone, the Subtropical Front. Foraging site fidelity and route-choice was further assessed by comparing site fidelity between continental shelf and oceanic habitats. Data from 31 lactating females, satellite tracked over 107 consecutive foraging trips indicated that females foraging on the continental shelf recorded a significantly greater overlap in foraging area between consecutive foraging routes, when compared to females that foraged in oceanic waters (55.9 ± 20.4 % and 13.4 ± 7.6 %, respectively). Findings suggest that seals learn the direction of travel to a predictable foraging region, and initiate a foraging trip on that bearing. However, actual foraging routes are likely to be influenced by a number of factors including previous foraging trip experience and prey encounter rate, which is related to prey density and the spatial scale of the patch exploited. The final chapter integrates scat analysis with milk fatty acid (FA) analysis to investigate dietary differences between continental shelf and oceanic waters. Milk FA composition was determined for 29 satellite-tracked fur seals, that were known to forage in either shelf or oceanic habitats. Based on FA compositions, I predicted the likelihood that milk samples collected at random (n = 131) represented individual seals having foraged either on the continental shelf or in distant oceanic waters. FA analysis and satellite tracking results contrasted with scat analyses, from which only 6 % of scats by frequency of occurrence contained prey remains from oceanic waters. The results suggest that scats were biased toward females foraging on the continental shelf. This study highlights the importance of two predictable ocean features utilised by New Zealand fur seals; (1) a nearby and seasonally predictable coastal upwelling system, the Bonney upwelling and; (2) a distant but permanent oceanic front, the Subtropical Front. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1347312 / Thesis (Ph.D.) - University of Adelaide, School of Earth and Environmental Studies, 2008
14

Mother-pup recognition behaviour, pup vocal signatures and allosuckling in the New Zealand fur seal, Arctocephalus forsteri

Dowell, Sacha January 2005 (has links)
A recognition system is required between pinniped mothers and pups. For otariids this is especially important since females frequently leave their pups for foraging and must reunite on return. Pups must deal with these fasting periods during maternal absence and consequently may attempt to obtain allomaternal care from unrelated females. This research on the New Zealand fur seal (Arctocephalus forsteri) at Ohau Point, Kaikoura, New Zealand, quantified mother-pup recognition behaviour during reunions, individuality of pup calls used by mothers to recognise their pup, and the occurrence of allosuckling as a possible recognition error by females and as a strategy employed by pups to gain allomaternal care during their mothers' absence. A combination of behavioural observations, morphometry, VHF radio telemetry, acoustics and DNA genotyping were employed to study these topics. Postpartum interaction behaviours between mothers and pups appeared to facilitate development of an efficient mother-pup recognition system, involving mainly vocal and olfactory cues that were utilised during reunions. Greater selective pressure on pups to reunite resulted in an asymmetry of searching behaviour between females and pups during reunions. The vocalisations of pups were stereotypic, especially those features of the fundamental frequency and frequency of the lowest harmonic, which are likely to facilitate recognition of a pup by their mother. Pups attempted to steal milk from unrelated females more often during maternal absence and appeared to modify the intra-individual variation pattern of a feature of their vocal signatures over this period, which may assist attempts at allosuckling under nutritional stress. Fostering was demonstrated to occur despite costs to filial pups and possible costs to female reproductive success and may be attributed to development of erroneous recognition between females and non filial pups, or kin selection. This study provides a valuable contribution to the knowledge of recognition systems between pinniped mothers and pups, of alternative pup strategies under nutritional stress and of the rare occurrence of fostering in otariid pinnipeds.
15

New Zealand fur seals in the Kaikoura region: colony dynamics, maternal investment and health

Boren, Laura Joy January 2005 (has links)
Colony dynamics, maternal investment, and indicators of health were investigated for the New Zealand fur seal (Arctocephalus forsteri) over four austral summers, 2001- 2005. Effort was focused at the Ohau Point seal colony, north of Kaikoura. Two colonies at Banks Peninsula were included for comparisons of colony growth and pup condition. A range of other colonies were also included for making comparisons about colony dynamics and health indices. Colony dynamics were investigated through mark-recapture estimates of pup production and daily census of all individuals at the Ohau Point colony. Maternal attendance patterns were observed through behavioural observations of known females (n = 120), the use of VHF radio transmitters (n = 33), and female mass and body condition estimates (n = 51). Maternal investment was also investigated through longitudinal sampling of pup mass and growth rates. Parameters used to indicate colony health were: body condition, growth, presence of parasites, and the levels and common causes of mortality. The influence of parasites on pup growth was tested using treatment of selected pups with Ivermectin anti-helmentic medication, and mortality in the region was investigated through reports of dead individuals, and post mortems of those found fresh. The Ohau Point colony is in an exponential state of growth, and pup mass and condition was higher and responded to changes in environmental variables differently than at the Banks Peninsula colonies. Lactation lengths were consistently longer at Ohau Point than is typically reported for the species (323-355 days vs. 285 days). Maternal investment strategies were indicative of a close, reliable food source, and showed flexibility between years through extension of foraging trip durations and the increased use of overnight foraging trips. Individual strategies did not significantly influence pup growth. However, increased maternal condition and the ability to respond to inter-annual changes in resource availability resulted in accelerated pup growth even during an El Niño event. The incidence of pups with intestinal parasites was low at Ohau Point, and the average mass of treated and non-treated pups did not differ. Pup mortality in the region was low (3% to 50 days old), however, mortality of older pups was greatly influenced by the proximity of humans, with 2/3 of pup mortality observed between the age of 50 days and weaning being caused by car collisions. The results suggest that population dynamics and maternal investment in the region are greatly influenced by local variables, notably the presence of an accessible food source within close proximity to the colony. Various indicators of health reflect a growing colony in good condition, and the presence of a reliable food source may influence the maximum density and carrying capacity the colony is able to sustain. However, some concerns are raised about the influence of human interactions in the region, and how this may affect mortality and colony dynamics in the future. Extra fencing along the Ohau Point colony is recommended to provide added protection from the road. Continued monitoring of mortality and health indices in the region is also recommended for comparison with other colonies as Ohau Point reaches carrying capacity and density-dependent pressures increase.
16

Reproductive ecology and life history trade-offs in a dimorphic polygynous mammal, the New Zealand fur seal

Negro, Sandra Silvia January 2008 (has links)
Polygyny is the most common mating system in mammalian species (95%), yet our understanding of polygynous systems and microevolutionary processes is still limited. Pinniped mating systems range from extreme polygyny (e.g. elephant seals) to sequential female defence by males and hence have often been used as models for mating system studies. Parentage analysis has enabled the examination of mating success, the identification of pedigrees, and the elucidation of social organisation, greatly enhancing our understanding of mating systems (Chapter 1). However, such analyses are not without pitfalls, with erroneous assignments common in open systems (i.e. when parental and offspring samplings are incomplete). We investigated the effects of the user-defined parameters on the accuracy of parental assignment using two commonly used parental allocation programme, CERVUS and PASOS (Chapter 2). We showed that inaccurate user-defined parameters in CERVUS and PASOS can lead to highly biased output e.g. the assignment rate at 95% CL of offspring with a sampled known mother to sampled males decreased from 58% to 32% when the proportion of candidate males sampled in the parameter options decreasing 4-fold. We found that the use of both CERVUS and PASOS for parentage assignment can increase the likelihood of correctly allocating offspring to sampled parents to 97% in our study system. Incorrect parental assignment can bias estimates of various biological parameters, such as lifetime reproductive success and mate choice preference, and hence bias ecological and evolutionary interpretations. Here, we propose solutions to increase the power of parentage assignment and hence decrease the bias in biological parameter estimates. In addition, we analysed the effects of the intrinsic bias in likelihood assignment approaches towards assigning higher probability of parentage on individuals with rare alleles and those with heightened offspring-parent matches, which increase with the number of homozygous loci (Chapter 3). We showed that, as a consequence of the algorithms employed in the programmes CERVUS and PASOS, heterozygote males with rare genotypes are assigned higher rates of parentage than males with common alleles. Consequently, where two males could both be biological fathers of a given offspring, parentage assignment will more often go to the male with the rarer alleles (most often in heterozygous loci). Thus, the commonly used parentage assignment methods may systematically bias the results of parentage analyses towards supporting the notion that females prefer more genetically unusual, most often heterozygous, males. Such a bias may sway investigators towards incorrectly supporting the concept that females choose genetically more unusual males for heterozygosity fitness benefits that underpin the good genes hypothesis, when in fact no such relationship may exist. In polygynous mammals, successful males mate with multiple females by competing with and limiting the access of other males to females. When the status of many males (age, size, health, genetic etc.) prevents them from achieving the primary mating tactic, theory predicts selection for a diversification of male mating tactics. Recent studies in pinnipeds have shown that observed male mating success was correlated to male paternity success in some species (elephant-seals), but not in others (grey seals). The existence of alternative mating strategies can explain those discrepancies. Chapter 4 implemented the guidelines provided in Chapter 2 and 3 and focused on the polygynous New Zealand fur seal Arctocephalus forsteri, predicting that 1) competition for females is likely to cause a diversification of male mating tactics; and 2) that alternative tactics can yield reproductive success. Our results indicated three male behavioural profiles; one corresponded to large territorial males and two illustrated a continuum of alternative tactics employed by non-territorial subordinate males. Our study highlights that holding a territory is not a necessary condition for reproductive success in a population of otariids. The degree of sexual size dimorphism in polygynous species is expected to increase with the degree of intra-sexual competition and in turn with the degree of polygyny. The life history of an individual is the pattern of resource allocations to growth, maintenance, and reproduction throughout its lifetime. Both females and males incur viability costs of mating and reproduction. However, male viability costs due to increase growth and male-male competition can be greater than female viability costs of mate choice and reproduction. Although an abundant literature on sexual dimorphism in morphology, physiology, and parasite infections is available, little is known on the intra-sexual differences in physiology and parasite infections associated to the reproductive success of different mating strategies in mammalian species. Chapter 5 examined the reproductive costs between territorial and subordinate males New Zealand fur seal related to their relative reproductive success using a multidisciplinary approach (behaviour, genetics, endocrinology, parasitology). We found that dominant New Zealand fur seal males endure higher reproductive costs due to the direct and indirect effects of high testosterone levels and parasite burdens. Our study highlights that holding a territory confers a higher reproductive success, but induces higher costs of reproduction that may impair survival. Understanding microevolutionary processes associated to polygynous systems is fundamental in light of the ongoing anthropogenic alteration of the environment through climatic variations and habitat reduction which ultimately affect opportunity for sexual selection and shape the life history trade-offs.
17

Early Migratory Behavior of Northern Fur Seal (Callorhinus ursinus) Pups from Bering Island, Russia

Lee, Olivia Astillero 2011 May 1900 (has links)
I examined the population trends of northern fur seals (Callorhinus ursinus) using an age-specific metapopulation model that allowed migration between rookeries. Mortality and birth rates were modified to simulate future population trends. I also examined the early migratory behavior and habitat associations of pups from Bering Island (BI), Russia. I instrumented 35 pups with Mk10-AL satellite tags and stomach temperature telemeters which provided diving, foraging and location data. I hypothesized that some aspects of pup behavior from the stable BI population differed from the behavior of pups from the unstable Pribilof Islands (PI). The population model revealed that emigration did not contribute significantly to the current PI population decline. However, large source populations contributed significantly to population growth in newly colonized rookeries. A stabilization of the PI population was predicted with a 10 to 20 percent reduction in both juvenile and adult female mortality rates. The diving behavior of pups showed a general progression towards longer and deeper dives as pups aged, particularly between 1600 – 0400 (local time), that was similar to PI pup behavior. However, unlike pups from the PI, I found three main diving strategies among BI pups: 1) shallow daytime divers (mean depth = 3.56 m), 2) deep daytime divers (mean depth = 6.36 m) and 3) mixed divers (mean depth = 4.81 m). The foraging behavior of pups showed that most successful ingestion events occurred between 1600 – 0400, with successful ingestion events lasting 25.36 plus/minus 27.37 min. There was no significant difference among the three strategies in the depth of successful foraging dives. I also examined the foraging search strategies in adult females and pups. Both pups and adults conducted Levy walks, although pups foraged in smaller patches (1 km scales). Using a logistic model to determine habitat associations, I found that pup locations were positively correlated with increasing chlorophyll a concentrations, distances from shore, and sea surface temperatures, and were negatively correlated with depth. There was no significant relationship between all pup locations and the regions (peripheries or centers) or types (cyclonic or anti-cyclonic) of eddies, but ingestion event locations were related to mesoscale eddy peripheries.
18

Mother-pup recognition behaviour, pup vocal signatures and allosuckling in the New Zealand fur seal, Arctocephalus forsteri

Dowell, Sacha January 2005 (has links)
A recognition system is required between pinniped mothers and pups. For otariids this is especially important since females frequently leave their pups for foraging and must reunite on return. Pups must deal with these fasting periods during maternal absence and consequently may attempt to obtain allomaternal care from unrelated females. This research on the New Zealand fur seal (Arctocephalus forsteri) at Ohau Point, Kaikoura, New Zealand, quantified mother-pup recognition behaviour during reunions, individuality of pup calls used by mothers to recognise their pup, and the occurrence of allosuckling as a possible recognition error by females and as a strategy employed by pups to gain allomaternal care during their mothers' absence. A combination of behavioural observations, morphometry, VHF radio telemetry, acoustics and DNA genotyping were employed to study these topics. Postpartum interaction behaviours between mothers and pups appeared to facilitate development of an efficient mother-pup recognition system, involving mainly vocal and olfactory cues that were utilised during reunions. Greater selective pressure on pups to reunite resulted in an asymmetry of searching behaviour between females and pups during reunions. The vocalisations of pups were stereotypic, especially those features of the fundamental frequency and frequency of the lowest harmonic, which are likely to facilitate recognition of a pup by their mother. Pups attempted to steal milk from unrelated females more often during maternal absence and appeared to modify the intra-individual variation pattern of a feature of their vocal signatures over this period, which may assist attempts at allosuckling under nutritional stress. Fostering was demonstrated to occur despite costs to filial pups and possible costs to female reproductive success and may be attributed to development of erroneous recognition between females and non filial pups, or kin selection. This study provides a valuable contribution to the knowledge of recognition systems between pinniped mothers and pups, of alternative pup strategies under nutritional stress and of the rare occurrence of fostering in otariid pinnipeds.
19

New Zealand fur seals in the Kaikoura region: colony dynamics, maternal investment and health

Boren, Laura Joy January 2005 (has links)
Colony dynamics, maternal investment, and indicators of health were investigated for the New Zealand fur seal (Arctocephalus forsteri) over four austral summers, 2001- 2005. Effort was focused at the Ohau Point seal colony, north of Kaikoura. Two colonies at Banks Peninsula were included for comparisons of colony growth and pup condition. A range of other colonies were also included for making comparisons about colony dynamics and health indices. Colony dynamics were investigated through mark-recapture estimates of pup production and daily census of all individuals at the Ohau Point colony. Maternal attendance patterns were observed through behavioural observations of known females (n = 120), the use of VHF radio transmitters (n = 33), and female mass and body condition estimates (n = 51). Maternal investment was also investigated through longitudinal sampling of pup mass and growth rates. Parameters used to indicate colony health were: body condition, growth, presence of parasites, and the levels and common causes of mortality. The influence of parasites on pup growth was tested using treatment of selected pups with Ivermectin anti-helmentic medication, and mortality in the region was investigated through reports of dead individuals, and post mortems of those found fresh. The Ohau Point colony is in an exponential state of growth, and pup mass and condition was higher and responded to changes in environmental variables differently than at the Banks Peninsula colonies. Lactation lengths were consistently longer at Ohau Point than is typically reported for the species (323-355 days vs. 285 days). Maternal investment strategies were indicative of a close, reliable food source, and showed flexibility between years through extension of foraging trip durations and the increased use of overnight foraging trips. Individual strategies did not significantly influence pup growth. However, increased maternal condition and the ability to respond to inter-annual changes in resource availability resulted in accelerated pup growth even during an El Niño event. The incidence of pups with intestinal parasites was low at Ohau Point, and the average mass of treated and non-treated pups did not differ. Pup mortality in the region was low (3% to 50 days old), however, mortality of older pups was greatly influenced by the proximity of humans, with 2/3 of pup mortality observed between the age of 50 days and weaning being caused by car collisions. The results suggest that population dynamics and maternal investment in the region are greatly influenced by local variables, notably the presence of an accessible food source within close proximity to the colony. Various indicators of health reflect a growing colony in good condition, and the presence of a reliable food source may influence the maximum density and carrying capacity the colony is able to sustain. However, some concerns are raised about the influence of human interactions in the region, and how this may affect mortality and colony dynamics in the future. Extra fencing along the Ohau Point colony is recommended to provide added protection from the road. Continued monitoring of mortality and health indices in the region is also recommended for comparison with other colonies as Ohau Point reaches carrying capacity and density-dependent pressures increase.
20

Reproductive ecology and life history trade-offs in a dimorphic polygynous mammal, the New Zealand fur seal

Negro, Sandra Silvia January 2008 (has links)
Polygyny is the most common mating system in mammalian species (95%), yet our understanding of polygynous systems and microevolutionary processes is still limited. Pinniped mating systems range from extreme polygyny (e.g. elephant seals) to sequential female defence by males and hence have often been used as models for mating system studies. Parentage analysis has enabled the examination of mating success, the identification of pedigrees, and the elucidation of social organisation, greatly enhancing our understanding of mating systems (Chapter 1). However, such analyses are not without pitfalls, with erroneous assignments common in open systems (i.e. when parental and offspring samplings are incomplete). We investigated the effects of the user-defined parameters on the accuracy of parental assignment using two commonly used parental allocation programme, CERVUS and PASOS (Chapter 2). We showed that inaccurate user-defined parameters in CERVUS and PASOS can lead to highly biased output e.g. the assignment rate at 95% CL of offspring with a sampled known mother to sampled males decreased from 58% to 32% when the proportion of candidate males sampled in the parameter options decreasing 4-fold. We found that the use of both CERVUS and PASOS for parentage assignment can increase the likelihood of correctly allocating offspring to sampled parents to 97% in our study system. Incorrect parental assignment can bias estimates of various biological parameters, such as lifetime reproductive success and mate choice preference, and hence bias ecological and evolutionary interpretations. Here, we propose solutions to increase the power of parentage assignment and hence decrease the bias in biological parameter estimates. In addition, we analysed the effects of the intrinsic bias in likelihood assignment approaches towards assigning higher probability of parentage on individuals with rare alleles and those with heightened offspring-parent matches, which increase with the number of homozygous loci (Chapter 3). We showed that, as a consequence of the algorithms employed in the programmes CERVUS and PASOS, heterozygote males with rare genotypes are assigned higher rates of parentage than males with common alleles. Consequently, where two males could both be biological fathers of a given offspring, parentage assignment will more often go to the male with the rarer alleles (most often in heterozygous loci). Thus, the commonly used parentage assignment methods may systematically bias the results of parentage analyses towards supporting the notion that females prefer more genetically unusual, most often heterozygous, males. Such a bias may sway investigators towards incorrectly supporting the concept that females choose genetically more unusual males for heterozygosity fitness benefits that underpin the good genes hypothesis, when in fact no such relationship may exist. In polygynous mammals, successful males mate with multiple females by competing with and limiting the access of other males to females. When the status of many males (age, size, health, genetic etc.) prevents them from achieving the primary mating tactic, theory predicts selection for a diversification of male mating tactics. Recent studies in pinnipeds have shown that observed male mating success was correlated to male paternity success in some species (elephant-seals), but not in others (grey seals). The existence of alternative mating strategies can explain those discrepancies. Chapter 4 implemented the guidelines provided in Chapter 2 and 3 and focused on the polygynous New Zealand fur seal Arctocephalus forsteri, predicting that 1) competition for females is likely to cause a diversification of male mating tactics; and 2) that alternative tactics can yield reproductive success. Our results indicated three male behavioural profiles; one corresponded to large territorial males and two illustrated a continuum of alternative tactics employed by non-territorial subordinate males. Our study highlights that holding a territory is not a necessary condition for reproductive success in a population of otariids. The degree of sexual size dimorphism in polygynous species is expected to increase with the degree of intra-sexual competition and in turn with the degree of polygyny. The life history of an individual is the pattern of resource allocations to growth, maintenance, and reproduction throughout its lifetime. Both females and males incur viability costs of mating and reproduction. However, male viability costs due to increase growth and male-male competition can be greater than female viability costs of mate choice and reproduction. Although an abundant literature on sexual dimorphism in morphology, physiology, and parasite infections is available, little is known on the intra-sexual differences in physiology and parasite infections associated to the reproductive success of different mating strategies in mammalian species. Chapter 5 examined the reproductive costs between territorial and subordinate males New Zealand fur seal related to their relative reproductive success using a multidisciplinary approach (behaviour, genetics, endocrinology, parasitology). We found that dominant New Zealand fur seal males endure higher reproductive costs due to the direct and indirect effects of high testosterone levels and parasite burdens. Our study highlights that holding a territory confers a higher reproductive success, but induces higher costs of reproduction that may impair survival. Understanding microevolutionary processes associated to polygynous systems is fundamental in light of the ongoing anthropogenic alteration of the environment through climatic variations and habitat reduction which ultimately affect opportunity for sexual selection and shape the life history trade-offs.

Page generated in 0.0782 seconds