1 |
Laboratory Analysis of a New Sand Consolidation Material for Oilfield ApplicationsFilbrandt, Joseph Daniel 2010 December 1900 (has links)
The production of sand can be a major issue in many young, unconsolidated
sandstone formations where there is little to no cement holding the individual sand
grains together. When such reservoirs are produced, quite often operators face problems
with reduced well productivity and equipment failure. Because of these issues, the
industry has developed numerous techniques in its effort to control formation sand
production. Sand consolidation is one technology that has been studied and used since
the 1940s. The theory behind sand consolidation technology is to place a liquid material
which will create a grain to grain contact that will bind individual sand grains together.
Most consolidation treatments contain a preflush to clean and wet the surface, the
consolidating system to bind the sand grains and give residual strength, and, finally, an
overflush to ensure the formation is still able to produce fluids. With the successful
placement of this fluid, the sand grains will be locked in placed so that they will not be
produced. The technology has gone through many phases of conception since the 1940s;
however, most consolidation material that is pumped in the past has been based upon an
epoxy or furan backbone.
While there are many technologies available, for the purpose of my research, the
epoxy technology was experimentally investigated. The testing of the fluid involved
investigating numerous additives to obtain the correct residual strength of the sample, as
well as the necessary retained permeability. For the epoxy fluid, the optimal preflush,
epoxy system and overflush formulations were determined after 250 checkout tests. Based upon these tests, the fluid was optimized to its working time and UCS results. The
optimal system included the addition of PA2 to the preflush, along with PA1 and an
aromatic amine curing agent to the epoxy system. PA1 and PA2 are adhesion promoter
additives which were deemed necessary as a result of the testing. This system was then
tested further in a HP/HT cell. While there is still room for improvement with respect to
retained permeability, the system still performs very well in terms of UCS.
|
2 |
Influência do cloreto de zinco na polimerização de resinas furânicas para moldes de fundiçãoVale, Marcus Antonio 06 February 2015 (has links)
Made available in DSpace on 2016-03-15T19:36:47Z (GMT). No. of bitstreams: 1
Marcus Antonio Vale.pdf: 14954412 bytes, checksum: 3b3a2b0489271f2cd612006f585d47b6 (MD5)
Previous issue date: 2015-02-06 / There are few manufacturing industries whose products covers such wide ranges in sizes,
weight and complexity as the foundry industry. Smaller castings can be as small as a grain of
rice and weight a fraction of gram, while the largest can reach hundreds of tons and be as big
as a house. There is a wide range of metal casting processes, characterized mainly by the allow
type and its pouring process and also by the mold type and its associated manufacturing process.
In the particular case of molds, there are molds produced using sand bonded by chemical
processes, or better, bonded by synthetic resin, which can be different in type and specific
chemical composition. The resins developed for the automotive market has led to major
changes in the manufacturing method of foundry molds. The polymerization of these resins and
a subsequent curing are used to connect to the foundry sand in a rigid structure capable of
receiving and holding liquid metal. Therefore, it is of fundamental importance to know the
process of polymerization of these resins and their impact on the final properties of the obtained
molds, especially in the mechanical characteristics. With respect to the sand-resin mixture (sand
prepared), important factors are: the range of bench life time (gel time) which must be long
enough to enable the manufacture of the mold, and cure speed should be fast enough to permit
rapid rotation of the casting tooling and hence greater productivity. The bench life time interval
is the maximum time (gel time) than the sand-resin mixture can be handled before starting the
vitrification reaction of the resin (crosslinking chains), the extraction time is the time required
for mold achieve an adequate minimum hardness to handling. The mixed sand life time is the
maximum interval which the mixed sand can be handling before the polymerization of the resin
used as bonding takes place. The hardening rate is the interval needed for the mold becomes
hard enough to be handled.
In this work was studied yhe influence of the addition of zinc chloride (in solution) in the sandfuran
resin mixture, with the aim of reducing the relation between the extraction time intervals
and time bench life. The results showed that addition of percentages of the order of 5.0% to
7.5% zinc chloride reduces this ratio between 10% and 17%; this means that the casting model
may be extracted from the sand mass in a smaller time interval increasing the productivity of
manufacturing molds. It was also observed that there was also an increase of about 9% to 18%
in bench life intervals. / Poucos são os setores industriais de manufatura cujos produtos cobrem faixas tão amplas de
tamanhos, peso e complexidade como o setor industrial de fundição. As menores peças fundidas
podem ser tão pequenas quanto um grão de arroz e pesar uma fração de grama, enquanto as
maiores podem atingir centenas de toneladas e ser tão grandes quanto uma casa. Existe uma
gama considerável de processos de fundição, caracterizados principalmente pelo tipo de liga e
seu processo de vazamento, pelo tipo de molde, e seu respectivo processo de fabricação. No
caso específico dos moldes, têm-se moldes fabricados com areias aglomeradas por processos
químicos, ou melhor, aglomerados com resinas sintéticas que podem ser de diferentes tipos e
com composição química específica. As resinas desenvolvidas para o mercado automotivo deu
origem a grandes mudanças na metodologia de fabricação dos moldes de fundição. A
polimerização destas resinas e sua subsequente cura são usados para ligar à areia de fundição
em uma rígida estrutura capaz de receber e manter metal líquido. Portanto, é de fundamental
importância conhecer o processo de polimerização destas resinas e seu impacto nas
propriedades finais dos moldes obtidos, principalmente nas características mecânicas. Com
relação à mistura areia-resina (areia preparada), os fatores importantes são o intervalo de tempo
de vida de banca (tempo de gelificação) que deve ser suficientemente longo para possibilitar a
confecção do molde, e a velocidade de cura (vitrificação) que deve ser rápida suficiente para
permitir a rápida rotatividade dos ferramentais de fundição e consequentemente uma maior
produtividade. O intervalo de tempo de vida de banca é o tempo máximo (tempo de gelificação)
que a mistura areia-resina pode ser manuseada antes de iniciar a reação de vitrificação da resina
(reticulação das cadeias), o tempo de extração é o tempo necessário para o molde atingir uma
dureza mínima adequada ao seu manuseio.
Neste trabalho foi estudada a influência da adição de cloreto de zinco (em solução) na mistura
areia-resina furânica, com o objetivo de reduzir a relação entre os intervalos de tempo de
extração e tempo de vida de banca. Os resultados obtidos mostraram que percentuais de adição
da ordem de 5,0% a 7,5% de cloreto de zinco reduzem esta relação entre 10% e 17%; o que
significa que o modelo de fundição poderá ser extraído da massa de areia em um menor
intervalo de tempo aumentando a produtividade de fabricação de moldes. Observou-se ainda
que houve também um aumento da ordem de 9% a 18% nos intervalos de vida de banca.
|
Page generated in 0.0614 seconds