• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Decimal Floating-point Fused Multiply Add with Redundant Number Systems

2013 May 1900 (has links)
The IEEE standard of decimal floating-point arithmetic was officially released in 2008. The new decimal floating-point (DFP) format and arithmetic can be applied to remedy the conversion error caused by representing decimal floating-point numbers in binary floating-point format and to improve the computing performance of the decimal processing in commercial and financial applications. Nowadays, many architectures and algorithms of individual arithmetic functions for decimal floating-point numbers are proposed and investigated (e.g., addition, multiplication, division, and square root). However, because of the less efficiency of representing decimal number in binary devices, the area consumption and performance of the DFP arithmetic units are not comparable with the binary counterparts. IBM proposed a binary fused multiply-add (FMA) function in the POWER series of processors in order to improve the performance of floating-point computations and to reduce the complexity of hardware design in reduced instruction set computing (RISC) systems. Such an instruction also has been approved to be suitable for efficiently implementing not only stand-alone addition and multiplication, but also division, square root, and other transcendental functions. Additionally, unconventional number systems including digit sets and encodings have displayed advantages on performance and area efficiency in many applications of computer arithmetic. In this research, by analyzing the typical binary floating-point FMA designs and the design strategy of unconventional number systems, ``a high performance decimal floating-point fused multiply-add (DFMA) with redundant internal encodings" was proposed. First, the fixed-point components inside the DFMA (i.e., addition and multiplication) were studied and investigated as the basis of the FMA architecture. The specific number systems were also applied to improve the basic decimal fixed-point arithmetic. The superiority of redundant number systems in stand-alone decimal fixed-point addition and multiplication has been proved by the synthesis results. Afterwards, a new DFMA architecture which exploits the specific redundant internal operands was proposed. Overall, the specific number system improved, not only the efficiency of the fixed-point addition and multiplication inside the FMA, but also the architecture and algorithms to build up the FMA itself. The functional division, square root, reciprocal, reciprocal square root, and many other functions, which exploit the Newton's or other similar methods, can benefit from the proposed DFMA architecture. With few necessary on-chip memory devices (e.g., Look-up tables) or even only software routines, these functions can be implemented on the basis of the hardwired FMA function. Therefore, the proposed DFMA can be implemented on chip solely as a key component to reduce the hardware cost. Additionally, our research on the decimal arithmetic with unconventional number systems expands the way of performing other high-performance decimal arithmetic (e.g., stand-alone division and square root) upon the basic binary devices (i.e., AND gate, OR gate, and binary full adder). The proposed techniques are also expected to be helpful to other non-binary based applications.
2

Orthogonal transformation based algorithms for singular value decomposition / 直交変換に基づく特異値分解アルゴリズム

Araki, Sho 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23323号 / 情博第759号 / 新制||情||129(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 矢ヶ崎 一幸, 准教授 辻本 諭 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM

Page generated in 0.048 seconds