• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuel Cycle Optimization of a Helium-Cooled, Sub-Critical, Fast Transmutation of Waste Reactor with a Fusion Neutron Source

Maddox, James Warren 28 March 2006 (has links)
Possible fuel cycle scenarios for a helium-cooled, sub-critical, fast reactor with a fusion neutron source for the transmutation of spent nuclear fuel have been analyzed. The transmutation rate was set by the 3000MWth fission power output. The primary objective was to achieve greater than 90% burn of the transuranic (TRU) fuel obtained from spent nuclear fuel. A secondary objective was to examine the possibility of achieving this deep burn without reprocessing after initial fabrication of the TRU into coated particle TRISO fuel. Four sets of 5-batch fuel cycle scenarios, differing in the constraints imposed on the beginning of cycle (BOC) k-eff and the end of cycle (EOC) neutron source strength (characterized by the fusion neutron source power level), were evaluated. In scenario A, BOC k-eff was required to be 0.95 and EOC Pfus less than 200 MWth was required. In scenario B, the restriction was removed to allow less reactive BOC fuel loadings, while the 200 MW upper limit on EOC Pfus was retained. It was found that the primary objective of greater than 90% TRU burn-up could be achieved by repeatedly reprocessing the TRISO TRU fuel particles to remove fission products and add fresh TRU makeup at the end of each 5-batch burn cycle, without needing to increase the fusion neutron source power above 100 MWth when the BOC k-eff is restricted to 0.95. The secondary objective of obviating processing could only be accomplished when the restriction was removed and recycling was employed or when both EOC Pfus and BOC k-eff restrictions were removed in a single-pass deep burn fuel cycle. In scenario C, with both the BOC k-eff limit and the fusion power limit unrestricted, greater than 90% TRU burn-up was achieved without reprocessing the TRISO TRU fuel particles, which could then be buried intact in a high-level waste repository, but a neutron source rate of 3370 MWth was required. In scenario D, with only the BOC k-eff limit unrestricted, greater than 90% TRU burn-up was achieved without reprocessing by the continuous recycle of TRISO particles through the reactor.
2

Study of high temperature and high density plasmoids in axially symmetrical magnetic fields

Berger, T., Konheiser, J., Anikeev, A. V., Prikhodko, V. V., Bagryansky, P. A., Kolesnikov, E. Yu., Soldatkina, E. I., Tsidulko, Yu. A., Noack, K., Lizunov, A. A. 31 March 2010 (has links) (PDF)
Within the framework of an Institutional Partnership of the Alexander von Humboldt Foundation, the Budker Institute of Nuclear Physics Novisibirsk (BINP) and Forschungszentrum Dresden-Rossendorf worked together in a joint project devoted to the research at the coupled GDT-SHIP facility of the BINP with the focus on the study of plasma phenomena within the SHIP mirror section. The project began at July 1st, 2005 and ended on August 30th, 2008. It included work packages of significant theoretical, computational and analyzing investigations. The focus of this final report is on the presentation of results achieved whereas the work that was done is described briefly only. Chapter 2 illustrates the GDT-SHIP facility and describes shortly the planned topics of the SHIP plasma research. Chapter 3 explains the main extensions and modifications of the Integrated Transport Code System (ITCS) which were necessary for the calculations of the fast ion and neutral gas particle fields in SHIP, describes briefly the scheme of computations and presents significant results of pre-calculations from which conclusions were drawn regarding the experimental program of SHIP. In chapter 4, the theoretical and computational investigations of self-organizing processes in two-component plasmas of the GDT-SHIP device are explained and the results hitherto achieved are presented. In chapter 5, significant results of several experiments with moderate and with enhanced plasma parameters are presented and compared with computational results obtained with the ITCS. Preparing neutron measurements which are planned for neutron producing experiments with deuterium injection, Monte Carlo neutron transport calculations with the MCNP code were also carried out. The results are presented. Finally, from the results obtained within the joint research project important conclusions are drawn in chapter 6.
3

Study of high temperature and high density plasmoids in axially symmetrical magnetic fields

Berger, T., Konheiser, J., Anikeev, A. V., Prikhodko, V. V., Bagryansky, P. A., Kolesnikov, E. Yu., Soldatkina, E. I., Tsidulko, Yu. A., Noack, K., Lizunov, A. A. January 2009 (has links)
Within the framework of an Institutional Partnership of the Alexander von Humboldt Foundation, the Budker Institute of Nuclear Physics Novisibirsk (BINP) and Forschungszentrum Dresden-Rossendorf worked together in a joint project devoted to the research at the coupled GDT-SHIP facility of the BINP with the focus on the study of plasma phenomena within the SHIP mirror section. The project began at July 1st, 2005 and ended on August 30th, 2008. It included work packages of significant theoretical, computational and analyzing investigations. The focus of this final report is on the presentation of results achieved whereas the work that was done is described briefly only. Chapter 2 illustrates the GDT-SHIP facility and describes shortly the planned topics of the SHIP plasma research. Chapter 3 explains the main extensions and modifications of the Integrated Transport Code System (ITCS) which were necessary for the calculations of the fast ion and neutral gas particle fields in SHIP, describes briefly the scheme of computations and presents significant results of pre-calculations from which conclusions were drawn regarding the experimental program of SHIP. In chapter 4, the theoretical and computational investigations of self-organizing processes in two-component plasmas of the GDT-SHIP device are explained and the results hitherto achieved are presented. In chapter 5, significant results of several experiments with moderate and with enhanced plasma parameters are presented and compared with computational results obtained with the ITCS. Preparing neutron measurements which are planned for neutron producing experiments with deuterium injection, Monte Carlo neutron transport calculations with the MCNP code were also carried out. The results are presented. Finally, from the results obtained within the joint research project important conclusions are drawn in chapter 6.

Page generated in 0.0937 seconds