• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 38
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 110
  • 110
  • 67
  • 35
  • 26
  • 25
  • 20
  • 19
  • 18
  • 18
  • 17
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

[en] EVALUATION INTELLIGENT MODEL OF WATER AND ENVIRONMENTAL QUALITY FOR A TROPICAL OLIGO-MESOTROPHIC RESERVOIR / [pt] MODELO INTELIGENTE DE AVALIAÇÃO DA QUALIDADE DE ÁGUA E DA QUALIDADE AMBIENTAL PARA UM RESERVATÓRIO TROPICAL OLIGO-MESOTRÓFICO

ANDRES BENJAMIN PALADINES ANDRADE 05 October 2018 (has links)
[pt] Uma forma de avaliar a qualidade da água e a qualidade ambiental de um reservatório para monitoramento futuro é listar e analisar as concentrações de tudo o que a mesma tem. Tal lista poderia ser tão longa quanto o número de elementos analisados, podendo ir de 20 e poucos componentes comuns a centenas. É assim que vários índices de qualidade têm sido propostos por serem capazes de sintetizar o maior número destes parâmetros de qualidade em um único valor de fácil interpretação. Não obstante, uma vez que a maior parte dos índices formulados serem para águas moventes, os mesmos têm pouca utilidade para lagos e reservatórios. Lagos e reservatórios são geralmente avaliados e classificados com base em índices de estado trófico e em análises de suas composições químicas. Porém, um índice de estado trófico não tem a mesma representatividade de um índice de qualidade, visto que o termo qualidade sugere uma avaliação subjetiva, importante ressaltar essa distinção de conceitos. Excelente ou pobre, a referência de qualidade da água depende do seu uso e das atitudes locais das pessoas. A definição de estado trófico e seu índice correspondente deveriam permanecer neutros a tais julgamentos subjetivos, mantendo-se numa estrutura dentro da qual podem ser feitas várias avaliações da qualidade da água. Dessa forma, no presente trabalho, criou-se um modelo de avaliação da qualidade da água e da qualidade ambiental para um reservatório tropical oligo-mesotrófico (reservatório das Lajes) capaz de representar em uma escala numérica as gradações nos níveis de qualidade, além de levar em consideração a subjetividade implícita no conceito de qualidade. A subjetividade da avaliação em discussão motivou o emprego da Lógica Fuzzy, metodologia capaz de representar, de forma mais eficiente e clara, os limites dos intervalos de variação dos parâmetros de qualidade para um conjunto de categorias subjetivas, quando esses limites não são bem definidos ou são imprecisos. Assim, foi desenvolvida uma ferramenta computacional baseada em Sistemas de Inferência Fuzzy que avalia automaticamente a qualidade em função de variáveis físicas, químicas e biológicas do reservatório. O referido modelo foi desenvolvido com base no conhecimento de especialistas em qualidade de água e qualidade ambiental do Centro de Ciências Biológicas e da Saúde da Universidade Federal do Estado do Rio de Janeiro (UNIRIO) e do Departamento de Biologia Animal da Universidade Federal Rural do Rio de Janeiro (UFRRJ). O modelo foi avaliado utilizando dados de coleta do reservatório das Lajes coletados no ano 2005, 2008 e 2009. / [en] There are many approaches to monitor the water and environmental qualities of a reservoir. One approach is to list and analyze the concentration of chemicals and physical characteristics that the amount of water it contains. Such a list could be as long as the number of elements analyzed, from a few common components to hundreds. Thus, many indices have been proposed since they are able to synthesize as many of these quality parameters into a single value for an easy interpretation. However, majority of the indices are formulated to evaluate lentic ecosystems, they have little use for lakes and reservoirs. Lakes and reservoirs are generally evaluated and classified based on trophic state indices and chemical composition analysis. Nevertheless, a trophic state index does not have the same representativeness of a quality index. The term quality implies a subjective judgment that is best kept separate from the concept of trophic state. Excellent or poor, water quality depends on the use of that water and the local attitudes of the people. The definition of trophic state and its corresponding index should remain neutral to these subjective judgments, remaining a framework within which various evaluations of water quality may be made. Accordingly, in today s world of technology and advancement there exists a unique model to evaluate water quality and environmental quality for a tropical oligo-mesotrophic reservoir which is located and known as the reservoir of Lajes in the State of Rio de Janeiro, Brazil. This model is capable of representing quality levels on a numerical scale gradation, and also takes into consideration the subjectivity implicit in the concept of quality. The subjectivity, implicit in the concept of quality, motivated the use of fuzzy logic. This is a methodology to represent more efficiently the limits of ranges of quality parameters for a set of subjective categories, when these limits are not well defined or are inaccurate. As a result, we developed a computational tool based on a Fuzzy Inference System that automatically assesses the quality in terms of the physical, chemical and biological characteristics of the reservoir. The model was developed based on the knowledge of experts on water quality and environmental quality from the Biological Sciences and Health Center of Universidade Federal do Estado do Rio de Janeiro (UNIRIO) and from the Department of Animal Biology of the Universidade Federal Rural do Rio de Janeiro (UFRRJ). The model was evaluated with data from the Lajes reservoir during the years 2005, 2008 and 2009.
102

Aplicação de Lógica Nebulosa para Previsão do Risco de Escorregamento de Taludes em Solo Residual. / Application of Fuzzy Logic for Prediction of Risk of Landslides on the Slope in Residual Soil.

Marcos Antonio da Silva 02 April 2008 (has links)
A estabilidade de taludes naturais é um tema de grande interesse ao engenheiro geotécnico, face às significativas perdas econômicas, e até mesmo humanas, resultantes da ruptura de taludes. Estima-se que a deflagração de escorregamentos já provocou milhares de mortes, e dezenas de bilhões de dólares em prejuízos anuais em todo o mundo. Os fenômenos de instabilização de encostas são condicionados por muitos fatores, como o clima, a litologia e as estruturas das rochas, a morfologia, a ação antrópica e outros. A análise dos condicionantes geológicos e geotécnicos de escorregamentos proporciona a apreciação de cada um dos fatores envolvidos nos processos de instabilização de encostas, permitindo a obtenção de resultados de interesse, no que diz respeito ao modo de atuação destes fatores. O presente trabalho tem como objetivo a utilização da Lógica Nebulosa (Fuzzy) para criação de um Modelo que, de forma qualitativa, forneça uma previsão do risco de escorregamento de taludes em solos residuais. Para o cumprimento deste objetivo, foram estudados os fatores envolvidos nos processos de instabilização de encostas, e a forma como estes fatores se interrelacionam. Como experiência do especialista para a elaboração do modelo, foi analisado um extenso banco de dados de escorregamentos na cidade do Rio de Janeiro, disponibilizado pela Fundação Geo-Rio. Apresenta-se, neste trabalho, um caso histórico bem documentado para a validação do Modelo Fuzzy e análises paramétricas, realizadas com o objetivo verificar a coerência do modelo e a influência de cada um dos fatores adotados na previsão do risco de escorregamento. Dentre as principais conclusões, destaca-se a potencialidade da lógica nebulosa na previsão de risco de escorregamentos de taludes em solo residual, aparecendo como uma ferramenta capaz de auxiliar na detecção de áreas de risco. / The stability of slopes is a topic of great interest to the geotechnical engineer, given the significant economic losses, and even human, resulting from the slopes collapse. Its estimated that the landslides outbreak has already caused thousands of deaths and tens of billions of dollars in annual losses worldwide. The phenomena of instability of slopes are conditioned by many factors, such as climate, the lithology and structures of rock, the morphology, the anthropic and others. The analysis of geological and geotechnical conditions of landslides provides an appraisal of each of the factors involved in the processes of instability of slopes, allowing the achievement of results of interest with regard to the mode of action of factors. The current work aims at the use of Fuzzy Logic to create a model that, in qualitative form, provide an estimate of the risk of landslides on the slope of residual soil. To fulfill this objective, we studied the factors involved in the processes of instability of slopes, and how these factors are interrelated. As experience of the expert to the development of the model was examined an extensive database of landslides in Rio de Janeiro, provided by the Geo-Rio Foundation. It is presented in this work, one history case well documented for the validation of the Fuzzy Model and parametric analysis, conducted with the objective to verify the consistency of the model and influence of each of the factors used to predict the risk of landslides. Among the main findings includes the capability of Fuzzy Logic in predicting risk of landslides on the slope of residual soil, appearing as a tool capable of assisting in the detection of areas of risk.
103

Processamento de conhecimento impreciso combinando raciocínio de ontologias fuzzy e sistemas de inferência fuzzy

Yaguinuma, Cristiane Akemi 13 December 2013 (has links)
Made available in DSpace on 2016-06-02T19:03:58Z (GMT). No. of bitstreams: 1 5694.pdf: 2329501 bytes, checksum: 90a80d78f180e25fc719ec410704ff8f (MD5) Previous issue date: 2013-12-13 / Financiadora de Estudos e Projetos / In Computer Science, ontologies are used for knowledge representation in a number of applications, aiming to structure and handle domain semantics through models shared by humans and computational systems. Although traditional ontologies model semantic information and support reasoning tasks, they are based on a formalism which is less suitable to express the vagueness inherent in real-world phenomena and human language. To address this issue, many proposals investigate how traditional ontologies can be extended by incorporating concepts from fuzzy sets and fuzzy logic, resulting in fuzzy ontologies. In special, combining the formalism from fuzzy ontologies with fuzzy rule-based reasoning, which has been successfully applied in the context of fuzzy inference systems, can lead to more expressive inferences involving imprecision. In this sense, this doctoral thesis aims at exploring the integration of fuzzy ontology reasoning with fuzzy inference systems, resulting in the definition and the development of two approaches: HyFOM (Hybrid integration of Fuzzy Ontology and Mamdani reasoning) and FT-FIS (Fuzzy Tableau and Fuzzy Inference System). HyFOM is based on a hybrid architecture combining reasoners for ontologies, fuzzy ontologies and fuzzy inference systems, focusing on the interaction among its independent components. FT-FIS defines an interface between a fuzzy tableau-based algorithm and a fuzzy inference system, including the fuzzyRuleReasoning predicate that allows fuzzy rule-based reasoning to be invoked whenever necessary for fuzzy ontology reasoning tasks. The main contribution of HyFOM and FT-FIS comes from their reasoning architectures, which combine flexibility in terms of fuzzy rule semantics with the collaboration between inferences from both types of reasoning. Experiments regarding the recommendation of touristic attractions, based on synthetic data, revealed that HyFOM and FT-FIS provide integrated inferences, in addition to a more expressive approximation of the relation defined by fuzzy rules than the results from the fuzzyDL reasoner. In experiments involving the evaluation of chemical risk in food samples, based on real data, results obtained by HyFOM and FT-FIS are also more precise than fuzzyDL results, in comparison with reference values available in this domain. / No contexto da Ciência da Computação, ontologias são utilizadas para representação de conhecimento em diversas aplicações, com o intuito de estruturar e tratar a semântica de domínios específicos. Embora representem e permitam inferir conhecimento implícito, as ontologias convencionais baseiam-se em um formalismo que não é capaz de expressar a imprecisão presente em fenômenos do mundo real e na linguagem humana. Para abordar esta limitação, há diversas pesquisas que investigam a incorporação de conceitos da teoria de conjuntos fuzzy e da lógica fuzzy em ontologias, resultando em ontologias fuzzy. Em especial, combinar o formalismo das ontologias fuzzy com o raciocínio baseado em regras fuzzy, utilizado com sucesso no contexto de sistemas de inferência fuzzy, pode proporcionar uma maior expressividade com relação às inferências envolvendo imprecisão. Neste sentido, o objetivo deste projeto de doutorado é explorar a integração do raciocínio de ontologias fuzzy e de sistemas de inferência fuzzy, resultando na definição e no desenvolvimento das abordagens HyFOM (Hybrid integration of Fuzzy Ontology and Mamdani reasoning) e FT-FIS (Fuzzy Tableau and Fuzzy Inference System). HyFOM baseia-se em uma arquitetura híbrida que combina motores de inferência existentes na literatura para ontologias, ontologias fuzzy e sistemas de inferência fuzzy, com foco na interação entre seus componentes independentes. FT-FIS define uma interface entre um algoritmo baseado em tableau fuzzy e um sistema de inferência fuzzy, incluindo o predicado fuzzyRuleReasoning que permite invocar o raciocínio baseado em regras fuzzy quando for necessário para as tarefas de raciocínio da ontologia fuzzy. A principal contribuição das arquiteturas de raciocínio de HyFOM e FT-FIS está na combinação de flexibilidade, em termos da semântica das regras fuzzy, com a colaboração entre as inferências de ambos tipos de raciocínio. Experimentos considerando a recomendação de atrações turísticas, baseados em dados sintéticos, revelaram que HyFOM e FT-FIS são capazes de proporcionar inferências integradas, além de uma aproximação mais expressiva da relação estabelecida pelas regras fuzzy que os resultados providos pelo raciocinador fuzzyDL. Em experimentos envolvendo o domínio de risco químico em alimentos, baseado em dados reais, os resultados de HyFOM e FT-FIS também são mais precisos que os resultados de fuzzyDL, em comparação com valores de referência disponíveis nesse domínio.
104

Sistema inteligente baseado em decomposição por componentes ortogonais e inferência fuzzy para localização de faltas de alta impedância em sistemas de distribuição de energia elétrica com geração distribuída / Intelligent system based on orthogonal decomposition technique and fuzzy inference for high impedance location fault in distribution systems with distributed generation

Oureste Elias Batista 28 March 2016 (has links)
Os sistemas elétricos de potência modernos apresentam inúmeros desafios em sua operação. Nos sistemas de distribuição de energia elétrica, devido à grande ramificação, presença de extensos ramais monofásicos, à dinâmica das cargas e demais particularidades inerentes, a localização de faltas representa um dos maiores desafios. Das barreiras encontradas, a influência da impedância de falta é uma das maiores, afetando significativamente a aplicação dos métodos tradicionais na localização, visto que a magnitude das correntes de falta é similar à da corrente de carga. Neste sentido, esta tese objetivou desenvolver um sistema inteligente para localização de faltas de alta impedância, o qual foi embasado na aplicação da técnica de decomposição por componentes ortogonais no pré-processamento das variáveis e inferência fuzzy para interpretar as não-linearidades do Sistemas de Distribuição com presença de Geração Distribuída. Os dados para treinamento do sistema inteligente foram obtidos a partir de simulações computacionais de um alimentador real, considerando uma modelagem não-linear da falta de alta impedância. O sistema fuzzy resultante foi capaz de estimar as distâncias de falta com um erro absoluto médio inferior a 500 m e um erro absoluto máximo da ordem de 1,5 km, em um alimentador com cerca de 18 km de extensão. Tais resultados equivalem a um grau de exatidão, para a maior parte das ocorrências, dentro do intervalo de ±10%. / Modern electric power systems present numerous challenges in its operation. Fault location is a major challenge in Power Distribution Systems due to its large branching, presence of single-phase laterals and the dynamic loads. The influence of the fault impedance is one of the largest, significantly affecting the use of traditional methods for its location, since the magnitude of the fault currents is similar to the load current. In this sense, this thesis aimed to develop an intelligent system for location of high impedance faults, which was based on the application of the decomposition technique of orthogonal components in the pre-processing variables and fuzzy inference to interpret the nonlinearities of Power Distribution Systems with the presence of Distributed Generation. The data for training the intelligent system were obtained from computer simulations of an actual feeder, considering a non-linear modeling of the high impedance fault. The resulting fuzzy system was able to estimate distances to fault with an average absolute error of less than 500 m and a maximum absolute error of 1.5 km order, on a feeder about 18 km long. These results are equivalent to a degree of accuracy for the most occurrences within the ± 10% range.
105

Sistema de inferência Fuzzy para classificação de distúrbios em sinais elétricos

Aguiar, Eduardo Pestana de 30 August 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-24T12:12:06Z No. of bitstreams: 1 eduardopestanadeaguiar.pdf: 1937921 bytes, checksum: 0472ffffb70cabf120dc5de86d6626b1 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-24T16:55:00Z (GMT) No. of bitstreams: 1 eduardopestanadeaguiar.pdf: 1937921 bytes, checksum: 0472ffffb70cabf120dc5de86d6626b1 (MD5) / Made available in DSpace on 2017-04-24T16:55:00Z (GMT). No. of bitstreams: 1 eduardopestanadeaguiar.pdf: 1937921 bytes, checksum: 0472ffffb70cabf120dc5de86d6626b1 (MD5) Previous issue date: 2011-08-30 / A presente dissertação tem como objetivo discutir o uso de técnicas de otimização baseadas no gradiente conjugado e de informações de segunda ordem para o treinamento de sistemas de inferência fuzzy singleton e non-singleton. Além disso, as soluções computacionais derivadas são aplicadas aos problemas de classificação de distúrbios múltiplos e isolados em sinais elétricos. Os resultados computacionais, obtidos a partir de dados sintéticos de distúrbios em sinais de tensão, indicam que os sistemas de inferência fuzzy singleton e non-singleton treinados pelos algoritmos de otimização considerados apresentam maior velocidade de convergência e melhores taxas de classificação quando comparados com aqueles treinados pelo algoritmo de otimização baseada em informações de primeira ordem e é bastante competitivo em relação à rede neural artificial perceptron multicamadas - multilayer perceptron (MLP) e ao classificador de Bayes. / This master dissertation aims to discuss the use of optimization techniques based on the conjugated gradient and on second order information for the training of singleton or non-singleton fuzzy inference systems. In addition, the computacional solutions obtained are applied to isolated a multiple disturbances classification problems in electric signals. Computational results obtained from synthetic data from disturbances in electric signals indicate that singleton or non-singleton fuzzy inference systems trained by the considered optimization algorithms present greater convergence speed and better classification rates when compared to those data trained by an optimization algorithm based on first order information and is quite competitive with multilayer perceptron neural network and Bayesian classifier.
106

Desenvolvimento de uma abordagem fuzzy para estimação de demanda de potência em um sistema de distribuição de energia elétrica / Development of a fuzzy approach for power demand forecast in an electrical energy distribution system

Lucas Assis de Moraes 01 August 2014 (has links)
Este trabalho tem por objetivo desenvolver uma abordagem fuzzy focando na estimação de curto prazo da demanda de potência ativa de um alimentador de sistema de distribuição de energia elétrica. A motivação para este trabalho encontra-se na redução do erro de estimação para que o sistema de distribuição como um todo seja corretamente operado. O destaque da abordagem desenvolvida é a metodologia de seleção de entradas para o sistema de estimação, que o treina fornecendo-lhe informações não redundantes e não desnecessárias sobre o comportamento da série temporal. Os resultados, obtidos com treinamento e teste de um sistema de inferência fuzzy multicamadas, mostram que as estimações realizadas selecionando as entradas do sistema de forma criteriosa apresentam menor erro que quando não há critério de seleção. Conclui-se então que a metodologia foi funcional e eficiente para o caso estudado, o que faz com que este trabalho resulte em válidas contribuições nas áreas de sistemas inteligentes, de sistemas dinâmicos e inclusive na forma metodológica de especificação de modelos de estimação de séries temporais. / This work aims to develop a fuzzy approach focusing on the short-term active power demand forecast in a feeder of an electrical energy distribution system. This work motivation lies on the reduction of the forecast error so that the whole distribution system can be correctly operated. The highlight of the developed approach is the methodology to select the inputs for the estimation system, which trains it giving to it non-redundant and non-unnecessary information about the time series behavior. The results, obtained by training and testing a multilayer fuzzy inference system, show that the estimations made by following a criterion to select the inputs have smaller error than when there is no selection criterion at all. It is therefore concluded that the methodology was functional and efficient for the case under study, what makes this work result in valid contributions for the fields of intelligent systems, dynamic systems and in the methodological way to specify models to estimate time series.
107

Klasifikace vzorů pomocí fuzzy neuronových sítí / Fuzzy Neural Networks for Pattern Classification

Ollé, Tamás January 2012 (has links)
Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.
108

Riziko výběru dodavatele s využitím fuzzy logiky / Risk in Selectinga Supplier Using Fuzzy Logic

Korčáková, Michaela January 2018 (has links)
The diploma thesis deals with the draft of fuzzy model used for decisions of choosing the suppliers of the tool steel for the company S.CH.W.SERVICE, s.r.o. In the introduction of the thesis the theoretical basis for the process are summarized and the company is introduced. The main part consists of the actual suggestions for the evalutaion of the company´s suppliers. The deciosion making models are created in MS Excel and MATLAB. The last part of the thesis is dedicated to the comparison of the results from both suggested models.
109

Klasifikace vzorů pomocí fuzzy neuronových sítí / Fuzzy Neural Networks for Pattern Classification

Ollé, Tamás January 2012 (has links)
Práce popisuje základy principu funkčnosti neuronů a vytvoření umělých neuronových sítí. Je zde důkladně popsána struktura a funkce neuronů a ukázán nejpoužívanější algoritmus pro učení neuronů. Základy fuzzy logiky, včetně jejich výhod a nevýhod, jsou rovněž prezentovány. Detailněji je popsán algoritmus zpětného šíření chyb a adaptivní neuro-fuzzy inferenční systém. Tyto techniky poskytují efektivní způsoby učení neuronových sítí.
110

Contribution au pronostic de durée de vie des systèmes piles à combustible PEMFC / Contribution to lifetime prognostics for proton exchange membrane fuel cell (PEMFC) systems

Silva Sanchez, Rosa Elvira 21 May 2015 (has links)
Les travaux de cette thèse visent à apporter des éléments de solutions au problème de la durée de vie des systèmes pile à combustible (FCS – Fuel Cell System) de type à « membrane échangeuse de protons » (PEM – Proton Exchange Membrane) et se décline sur deux champs disciplinaires complémentaires :Une première approche vise à augmenter la durée de vie de celle-ci par la conception et la mise en œuvre d'une architecture de pronostic et de gestion de l'état de santé (PHM – Prognostics & Health Management). Les PEM-FCS, de par leur technologie, sont par essence des systèmes multi-physiques (électriques, fluidiques, électrochimiques, thermiques, mécaniques, etc.) et multi-échelles (de temps et d'espace) dont les comportements sont difficilement appréhendables. La nature non linéaire des phénomènes, le caractère réversible ou non des dégradations, et les interactions entre composants rendent effectivement difficile une étape de modélisation des défaillances. De plus, le manque d'homogénéité (actuel) dans le processus de fabrication rend difficile la caractérisation statistique de leur comportement. Le déploiement d'une solution PHM permettrait en effet d'anticiper et d'éviter les défaillances, d'évaluer l'état de santé, d'estimer le temps de vie résiduel du système, et finalement, d'envisager des actions de maîtrise (contrôle et/ou maintenance) pour assurer la continuité de fonctionnement. Une deuxième approche propose d'avoir recours à une hybridation passive de la PEMFC avec des super-condensateurs (UC – Ultra Capacitor) de façon à faire fonctionner la pile au plus proche de ses conditions opératoires optimales et ainsi, à minimiser l'impact du vieillissement. Les UCs apparaissent comme une source complémentaire à la PEMFC en raison de leur forte densité de puissance, de leur capacité de charge/décharge rapide, de leur réversibilité et de leur grande durée de vie. Si l'on prend l'exemple des véhicules à pile à combustible, l'association entre une PEMFC et des UCs peut être réalisée en utilisant un système hybride de type actif ou passif. Le comportement global du système dépend à la fois du choix de l'architecture et du positionnement de ces éléments en lien avec la charge électrique. Aujourd'hui, les recherches dans ce domaine se focalisent essentiellement sur la gestion d'énergie entre les sources et stockeurs embarqués ; et sur la définition et l'optimisation d'une interface électronique de puissance destinée à conditionner le flux d'énergie entre eux. Cependant, la présence de convertisseurs statiques augmente les sources de défaillances et pannes (défaillance des interrupteurs du convertisseur statique lui-même, impact des oscillations de courant haute fréquence sur le vieillissement de la pile), et augmente également les pertes énergétiques du système complet (même si le rendement du convertisseur statique est élevé, il dégrade néanmoins le bilan global). / This thesis work aims to provide solutions for the limited lifetime of Proton Exchange Membrane Fuel Cell Systems (PEM-FCS) based on two complementary disciplines:A first approach consists in increasing the lifetime of the PEM-FCS by designing and implementing a Prognostics & Health Management (PHM) architecture. The PEM-FCS are essentially multi-physical systems (electrical, fluid, electrochemical, thermal, mechanical, etc.) and multi-scale (time and space), thus its behaviors are hardly understandable. The nonlinear nature of phenomena, the reversibility or not of degradations and the interactions between components makes it quite difficult to have a failure modeling stage. Moreover, the lack of homogeneity (actual) in the manufacturing process makes it difficult for statistical characterization of their behavior. The deployment of a PHM solution would indeed anticipate and avoid failures, assess the state of health, estimate the Remaining Useful Lifetime (RUL) of the system and finally consider control actions (control and/or maintenance) to ensure operation continuity.A second approach proposes to use a passive hybridization of the PEMFC with Ultra Capacitors (UC) to operate the fuel cell closer to its optimum operating conditions and thereby minimize the impact of aging. The UC appear as an additional source to the PEMFC due to their high power density, their capacity to charge/discharge rapidly, their reversibility and their long life. If we take the example of fuel cell hybrid electrical vehicles, the association between a PEMFC and UC can be performed using a hybrid of active or passive type system. The overall behavior of the system depends on both, the choice of the architecture and the positioning of these elements in connection with the electric charge. Today, research in this area focuses mainly on energy management between the sources and embedded storage and the definition and optimization of a power electronic interface designated to adjust the flow of energy between them. However, the presence of power converters increases the source of faults and failures (failure of the switches of the power converter and the impact of high frequency current oscillations on the aging of the PEMFC), and also increases the energy losses of the entire system (even if the performance of the power converter is high, it nevertheless degrades the overall system).

Page generated in 0.0631 seconds