• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 271
  • 85
  • 30
  • Tagged with
  • 480
  • 480
  • 56
  • 50
  • 47
  • 45
  • 43
  • 41
  • 40
  • 39
  • 38
  • 37
  • 37
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Caractérisation thermo-électro-mécanique des interfaces fonte-acier-carbone dans une cuve d'électrolyse

Rouleau, Mathieu January 2007 (has links) (PDF)
Depuis des milliers d'années, les métaux ont pourvu aux besoins matériels des gens. L'aluminium ne fait pas exception, et est certainement l'un des métaux les plus prisé en raison de sa légèreté. Ce n'est que dans les années 1800 que sa fabrication (son extraction en fait) est rendu possible avec le procédé de Hall-Héroult. Aujourd'hui encore, ce procédé est le seul utilisé à l'échelle industrielle, et requiert un appareillage complexe impliquant les domaines thermique et électrique. Étant donnée que certaines parties de la cuve de Hall-Héroult sont particulièrement importantes, elles font l'objet d'études particulières. C'est le cas notamment des anodes et des cathodes. Le but de ce présent ouvrage était de comprendre et de quantifier les phénomènes de résistance de contact thermique et électrique se produisant à la cathode ainsi qu'à l'anode d'une cuve d'électrolyse. Ces données ont été traduites sous formes de loi de comportement. La problématique du mauvais transfert électrique et de chaleur entre deux matériaux provient du fait que les aspérités et les cavités des surfaces en contact créent un espace interstitiel entre les solides; il peut même y avoir une couche de gaz emprisonnée dans les cavités. Si bien que les deux surfaces ne se touchent qu'avec moins de 3% de leur surface apparente, même si une énorme pression est appliquée sur les solides. Cela crée un étranglement des lignes de courant aux points de contact réels, engendrant la résistance de contact. Il existe plusieurs modèles théoriques de résistance de contact thermique et électrique. Ces modèles sont cependant basés sur des hypothèses assez restrictives ainsi que sur des propriétés des matériaux qui peuvent être très difficiles à obtenir pour des températures élevées. Une méthodologie expérimentale a donc été préférée à une approche théorique. Un montage expérimental a été conçu et fabriqué dans les laboratoires de l'Université. Des échantillons ont été fabriqués à l'usine Alcan Grande-Baie. Une attention particulière a été prise pour que la fabrication des échantillons soit la plus fidèle possible à la réalité des scellements d'anode et de cathode des usines Aîcan. Plusieurs essais ont été réalisés sur les échantillons de fonte/carbone et de fonte/acier anodiques et cathodiques. Tel que prévu, les résistances de contact thermiques et électriques diminuent avec la pression et la température. Cependant il semble que les valeurs des résultats expérimentaux soient plus élevées que celles prédites par les modèles théoriques. En effet, les résistances électriques sont de 3 à 5 fois supérieures aux modèles théoriques, tandis que les résistances thermiques sont 2 à 3 fois supérieures aux différents modèles théoriques. De plus, un comportement monotonique entre les valeurs des résistances de contact et la température était attendu. Or, une variation non-monotonique, vers 500°C, a été observée de façon récurrente. Ces phénomènes « non attendu » ne seraient peut-être pas étrangers à certaines observations faites en laboratoire. Effectivement, un durcissement de la fonte en surface, un recuit de relaxation de la fonte, une formation d'oxydes de surface, une décarburisation de la fonte, des zones de soudure entre la fonte et l'acier ont été observés tout au long des essais en laboratoire. Ces perturbations métalurgico-chimique qui surviennent sans doute également en usine, pourrait sans doute expliquer la variation des valeurs expérimentales par rapport aux modèles théoriques, de même que la non-monotonicité des résistances de contact selon la température. Ces perturbations sont en majorité des mécanismes se produisant principalement à hautes températures (mis à part le durcissement de la surface de la fonte). Une validation de ces mécanismes serait pertinente pour bien comprendre toutes les variables relatives aux résistances de contact.
212

Évaluation de l'adhérence de la glace à partir du modèle réduit d'une pale d'hélicoptère en rotation

Gouez, Gaétan January 2010 (has links) (PDF)
Afin d'améliorer les connaissances relatives aux propriétés adhésives de la glace sur une pale d'hélicoptère en rotation, le Laboratoire International des Matériau Antigivres (LIMA) en collaboration avec le Consortium de Recherche et d'Innovation en Aérospatiale du Québec (CRIAQ) et le Conseil National de Recherche du Canada (CNRC) a développé un modèle réduit d'un rotor d'hélicoptère qui à été installé dans une soufflerie réfrigérée générant des précipitations givrantes afin de simuler les conditions verglaçantes affectant les hélicoptères en vol. L'objectif de ce mémoire est de présenter les résultats relatifs à la validation du modèle réduit du phénomène d'accrétion de glace sur une pale d'hélicoptère en rotation et dans les résultats d'adhérence de la glace calculés analytiquement à partir des simulations expérimentales. Ce travail de recherche s'appuie principalement sur l'acquisition de données expérimentales obtenues à l'aide d'un modèle réduit. Ce modèle réduit à l'échelle l/18eme comprend : un rotor d'un diamètre de 0,78 m et deux pales d'aluminium de profil NACA- 0012 de longueur 0,315 m avec une corde de 69,64 mm. Un moteur électrique entraine le rotor et les pales. La section d'essai de la soufflerie réfrigérée du LIMA mesure 1,7 m de long par 0,914 m de large par 0,762 m de hauteur. La précipitation verglaçante est simulée à l'aide d'une rampe oscillante de neuf gicleurs pulvérisant des gouttelettes en amont de la section d'essai. La vitesse de l'écoulement d'air est de 15 m/s. Les essais de simulations ont été réalisés à des températures contrôlées variant entre -5 et -20 °C. En réalisant le bilan mécanique des forces agissant sur la pale, la valeur de l'adhérence de la glace est calculée. Le bilan mécanique contient trois principales composantes: la force centrifuge, la cohésion de la glace et l'adhérence de la glace sur la pale. Un essai consiste à givrer les pales jusqu'à ce que le poids du dépôt de glace soit suffisamment élevé pour qu'il se détache de la pale sous l'action de la force centrifuge. L'adhérence peut ainsi être calculée à partir de deux méthodes dépendamment de l'issue de l'essai. Si une pale est déglacée, l'adhérence est calculée en utilisant la masse du dépôt qui ne s'est pas détachée; c'est la méthode de la masse. Si les deux pales ce sont déglacées, l'épaisseur de glace sur les pales est extrapolée pour ensuite déduire la masse de glace décrochée; c'est la méthode de l'épaisseur. Les 150 essais réalisés ont montré que les formes de glace accrétées concordent avec celles décrites par la littérature et varient selon la température de l'air pendant l'essai. Effectivement, il apparaît que l'épaisseur de glace accrétée diminue lorsque la température augmente dû à l'écoulement d'une partie de l'eau captée par la pale. À -15 °C, la valeur de l'adhérence de la glace sur la pale d'aluminium, obtenues selon les deux méthodes varie entre 0,19 MPa pour la méthode de la masse et 0,20 MPa par la méthode de l'épaisseur avec un écart type moyen de 25 %. Les résultats d'adhérence de la glace calculés à partir du modèle réduit concordent très bien avec ceux de la littérature lorsque 1'accretion de glace est réalisée dans des conditions similaires. Les résultats obtenus par la méthode de la masse et par la méthode de l'épaisseur sont très proche, et en deçà des disparités qui existent entre les résultats d'une même méthode. La formule semi-empirique pour déterminer l'adhérence à partir du modèle réduit de pale en rotation est donc valide. Il sera donc possible d'utiliser ce nouvel outil afin de par exemple, évaluer l'efficacité de revêtements glaciophobes à différentes températures sur des pales d'hélicoptères.
213

Critères de déclenchement du délestage de la neige collante de câbles aériens

Olqma, Ossama January 2009 (has links) (PDF)
En période d'hivers, certaines régions du monde reçoivent plusieurs mètres de neige. À cause de présence d'eau liquide, une sorte d'accrétion de neige, dite collante, peut être très problématique sur la fiabilité et la sécurité des lignes aériennes, puisque l'accumulation de la neige peut provoquer une surcharge sur le câble. Par conséquent, l'étude sur les critères de déclenchement du délestage sur des câbles aériens est d'un intérêt énorme. À l'atteinte de valeurs assez hautes de la LWC (la teneur en eau liquide), les douilles de neige perdent leur cohésion et leur adhésion et tombent naturellement sous l'effet de la pesanteur et du vent. Une étude expérimentale et théorique sur le déclenchement de la perte de neige collante des câbles électriques avec une flèche négligeable dans différentes conditions ambiantes a été réalisée afin de déterminer l'évolution des caractéristiques de la neige précédant son délestage. La LWC et la densité sont à l'origine du pouvoir adhésif de la neige sur le câble jusqu'au déclenchement de la chute de la neige. Dans un premier temps, une méthode simple et peu coûteuse a été reprise afin de reproduire des douilles de neiges sur un câble suspendu à l'aide des recommandations de Roberge, 2006. Plusieurs séries d'expériences ont été établies selon des conditions atmosphériques contrôlables : la température de l'air, la vitesse du vent, l'intensité lumineuse du rayonnement et le courant électrique traversant un câble. Par la suite, un modèle thermodynamique basé sur le bilan de chaleur (considérant la convection, F evaporation/condensation, la radiation et l'effet de Joule) de la douille de neige tente de prédire la variation de la LWC et de la densité en fonction du temps et selon les différents paramètres mis en jeu. D'ailleurs, le modèle simule la percolation de l'eau dans la section circulaire et transversale à l'extrémité de la douille de neige dans le sens de la gravité. De plus, la simulation permet de mesurer la déformation de la douille à l'aide la cavité jusqu'au délestage. Une validation du modèle est réalisée par une comparaison avec les résultats expérimentaux.
214

Prédiction de l'efficacité de courant du procédé Hall-Héroult

Dassylva-Raymond, Véronique January 2009 (has links) (PDF)
Le procédé Hall-Héroult, permettant la production de l'aluminium par electrolyse, est très énergivore et polluant. Le rendement de production de ce procédé se nomme efficacité de courant et est défini comme étant le rapport entre la production de métal réelle et théorique, obtenue par la loi de Faraday. La compagnie Process Performance Technologies a développé un projet dans le but d'augmenter l'efficacité de courant du procédé Hall-Héroult. Ce projet est divisé en deux volets distincts, soit la mise au point d'un système de contrôle ainsi que le développement d'un système d'analyse statistique incluant un modèle mathématique de prédiction d'efficacité de courant. Le travail de recherche de cette maîtrise, mené en collaboration avec la compagnie P.P.T., porte essentiellement sur le modèle mathématique de prédiction d'efficacité de courant. L'objectif principal était de valider et d'améliorer le modèle utilisée par P.P.T.. Pour ce faire, une large recherche bibliographique a été effectuée afin de comparer les équations du modèle P.P.T. à celles présentes dans la littérature. D'autre part, une banque de relations empiriques concernant les propriétés de l'électrolyte, tirées de la littérature, a été remise à la compagnie afin de permettre à l'utilisateur du système de choisir les équations les plus appropriées au type de bain qu'il utilise. Une étude approfondie, portant sur un des paramètres importants du modèle, l'épaisseur de la gelée, a aussi été effectuée. L'analyse de plusieurs modèles globaux à résistances thermiques a permis de mieux comprendre l'influence du coefficient de transfert de chaleur bain-gelée sur l'épaisseur de la couche de gelée. De plus, diverses modélisations numériques, réalisées à l'aide d'un logiciel commercial d'éléments finis, ont été effectuées afin d'étudier le comportement de la gelée et aussi dans le but d'obtenir une équation généralisée reliant les pertes de chaleur et l'épaisseur de la gelée.
215

Pertes énergétiques d'une éolienne à partir des formes de glace simulées numériquement

Dimitrova, Mariya Hristova January 2009 (has links) (PDF)
Les milieux nordiques disposent généralement de régions très bien exposées au vent et ces régions semblent idéales pour l'exploitation des éoliennes. Malheureusement, les problèmes liés au givrage y sont fréquents et ont des sérieuses conséquences sur la production des éoliennes, leur maintenance et leur durée de vie. Le givrage, qui est caractéristique des régions au climat froid, est le phémomène d'accumulation de glace sur les pales des éoliennes. Il est causé par la pluie verglaçante, la bruine et le brouillard givrant au niveau du sol ou le givrage dans les nuages en altitude, ou le gel, lorsque l'éolienne est installée à proximité des masses d'eau. Le givrage diminue les performances aérodynamiques en provoquant des pertes de puissance et par conséquent des pertes énergétiques. L'impact du givrage est difficile à quantifier sans essais expérimentaux et simulations numériques en raison du manque de données réelles sur le terrain. Le coût des essais en soufflerie étant élevé, une approche par simulations numériques permet de fournir rapidement des informations sur les pertes de performances aérodynamiques et énergétiques dans différentes configurations d'éoliennes et de conditions météorologiques. Combiner des mesures météorologiques nombreuses à des modèles numériques puissants est essentiel pour évaluer adéquatement l'impact du givre sur le fonctionnement d'une éolienne et sa production annuelle.
216

Modélisation et optimisation des fours à puits latéral = Modelling and optimisation of sidewell fournaces

Kocaefe, Yasar January 2003 (has links) (PDF)
Le recyclage de l'aluminium a de multiples effets positifs sur l'économie et l'environnement. Il aide à conserver les ressources, réduire les dépenses d'énergie de 95% et le coût de l'aluminium. Aujourd'hui, le recyclage est une composante majeure de l'industrie de raluminium. Les canettes de boisson constituent la catégorie de recyclables la plus importante en quantité et en qualité. En général, on effectue la refonte des canettes dans les fours à puits latéral. L'industrie du recyclage croît très rapidement, et pour demeurer compétitive, elle doit optimiser son efficacité en diminuant les coûts d'énergie et maximisant la productivité. Dans cette optique, un projet a été entrepris pour le développement des modèles du four à puits latéral. À l'aide de ces modèles, on peut améliorer et optimiser le design et l'opération de ces fours. L'objectif du projet est de développer des outils pour les travaux d'amélioration et d'optimisation requis des fours à puits latéral : Un modèle mathématique général en 3D pour des études détaillées comme la meilleure géométrie du four, et la meilleure position de la pompe et de l'hélice pour optimiser la fusion et la circulation du métal, Un modèle mathématique dynamique simplifié pour des études de contrôle et d'opération. Le four est composé de deux parties : un puits latéral dans lequel les copeaux de canettes déchiquetées sont alimentés et une chambre principale dans laquelle la chaleur est introduite. Des arches d'entrée et de sortie assurent la circulation du métal entre ces deux parties à travers le mur de séparation. Dans le puits latéral, on installe une hélice pour submerger les copeaux, à laquelle on adjoint un muret pour favoriser la circulation du métal chaud. Certaines usines ajoutent une pompe à injection de métal dans la chambre principale pour obtenir un meilleur brassage dans le bain de métal liquide. La performance d'un four de refonte peut être caractérisée par le rendement énergétique et le taux de refonte. Ces paramètres dépendent du transfert effectif de la chaleur entre la chambre de combustion où elle est générée et les points d'utilisation. La chaleur est requise pour maintenir le métal liquide à une certaine température et pour fondre les copeaux introduits dans le puits latéral et le métal solide admis dans la chambre principale. Le projet consiste en quatre parties. La première partie est le développement d'un modèle en 3D pour le calcul de l'écoulement isotherme dans le bain de métal. On solutionne les équations différentielles de la continuité, de la quantité de mouvement en trois directions, et de la turbulence en utilisant le logiciel CFX. Un grand nombre de simulations ont été effectuées pour étudier l'effet des paramètres sur l'écoulement. À partir des résultats, on a optimisé les positions de l'hélice et de la pompe, la longueur et le type du muret, les grandeurs des arches, la largeur du puits, et la géométrie de la chambre principale pour obtenir la meilleure circulation du métal liquide dans le bain. La deuxième partie est la modélisation de la chambre de combustion. Un modèle à une zone de gaz est développé pour calculer le transfert de chaleur au métal (aussi aux réfractaires) par rayonnement et par convection. Ce modèle ne donne pas tous les détails concernant les distributions de la température et de la densité de flux de chaleur, mais il est simple et il tient compte de tous les phénomènes importants. De plus, le temps de calcul est très court. Une étude paramétrique a été déjà effectuée pour déterminer les effets des différents facteurs sur le transfert de chaleur au métal. Les résultats montrent qu'on peut améliorer le transfert de chaleur au métal en augmentant le débit du carburant et la température de l'air de combustion. Le débit du carburant a un impact significatif, mais le rendement du four diminue avec une augmentation du débit. La température de l'air de combustion est le paramètre le plus important et le plus facile à ajuster. Le préchauffage de l'air augmente le transfert de chaleur ainsi que le rendement du four. Aussi, il est important de mélanger le bain de métal pour maintenir la température de la surface la plus basse possible pour que le transfert de chaleur au métal soit favorisé. La troisième partie est la modélisation globale du four en 3D. Étant donné le caractère transitoire du procédé, le transfert de chaleur dans le métal liquide est aussi incorporé dans lé modèle du bain de métal, et il est couplé avec le modèle de la chambre de combustion. Pour optimiser le temps de calcul, le champ de vitesse est déterminé en régime établi, et ce champ de vitesse est utilisé pour solutionner l'enthalpie en régime transitoire. Les résultats montrent que l'écoulement forcé est le facteur le plus important. Le gradient de température diminue avec la circulation du métal à travers les arches et le brassage dans la chambre principale. On voit que le gradient moyen de la température dans la chambre principale diminue de 50% (d'environ 80°C à 40°C) en ajoutant un muret et de 80-90% (d'environ 80°C à 10°C) avec un muret et une pompe. La quatrième partie est le développement du modèle dynamique du four pour améliorer le contrôle du procédé. Le four à puits latéral est un système très dynamique et tout varie en fonction du temps. Pour étudier l'aspect d'opération, il faut un modèle dynamique. La modélisation est faite de façon modulaire en deux parties représentant le métal et la chambre de combustion. Les deux parties sont construites séparément puis sont couplées ensemble afin d'obtenir un outil intégré. L'interface pour le couplage est la surface du bain de métal. C'est un modèle simplifié, mais il tient compte de tous les phénomènes et tous les événements du procédé. Ce modèle sert comme un four virtuel. Un émulateur de contrôle est ajouté et un simulateur pour fours à puits latéral est ainsi obtenu. Le simulateur qui est utilisé à partir d'une interface-usager est transféré à l'industrie pour des applications. Plusieurs études ont été déjà effectuées en utilisant ce simulateur. On a étudié les effets des positions des thermocouples d'opération (contrôle), de la température maximale des réfractaires permise, des préchauffages des métaux alimentés et de l'air de combustion sur la performance du four. Les améliorations ont été apportées au procédé à partir des résultats obtenus. Tous les modèles sont validés en utilisant les données expérimentales disponibles du laboratoire et des usines. Tous les résultats du modèle mathématique sont confirmés par les observations en usine.
217

Modélisation et résolution du problème de contact mécanique et son application dans un contexte multi-physiques

Bussetta, Philippe January 2009 (has links) (PDF)
Le contact mécanique est le problème de mécanique des solides qui présente les non-linéarités les plus difficiles à prendre en compte. La bonne résolution numérique de ce problème est fortement perturbée par la non-linéarité et la non-différentiabilité des équations régissant le contact mécanique frottant (collement-décollement et amorce du glissement). Encore aujourd'hui, il n'existe pas de méthode permettant de résoudre le problème de contact frottant de manière universelle. Ce travail porte donc sur l'élaboration de méthodes permettant de résoudre le plus grand nombre de types de problème de contact frottant. II peut être décomposé en deux parties. La première partie porte sur la formation du système d'équations et l'algorithme de résolution. Les méthodes les plus utilisées sont celles de pénalisation et du lagrangien augmenté. Bien que très simple, ces méthodes sont assez difficiles à utiliser en raison de la difficulté d'identification des valeurs des coefficients de pénalisation (normale et tangentielle). Afin de pallier les carences de ces méthodes, une nouvelle approche est proposée, celle dite du « lagrangien augmenté adapté ». Cette nouvelle méthode est basée sur celle du lagrangien augmenté jumelée à une adaptation de la pénalité. Elle présente l'avantage de ne plus obliger l'utilisateur à choisir des coefficients de pénalisation. De plus, elle cumule la rapidité de l'adaptation de la pénalité et la fiabilité de la méthode du lagrangien augmenté. La deuxième partie porte sur la prise en compte du contact sous une discrétisation spatiale. La méthode la plus utilisée est la méthode « point-surface ». Le contact est calculé pour chacun des points d'une des surfaces avec l'autre surface. Cette méthode présente de nombreuses limites, notamment au niveau de la représentativité et de la régularité de la solution lorsque les deux surfaces sont déformables et irrégulières. Une autre méthode fait l'objet d'intense recherche, la méthode « surface-surface »basée sur les éléments joints. Le contact est calculé pour chaque noeud d'une des surface en fonction des deux surfaces ce qui rend la solution plus régulière et plus représentative. Cependant, les complications induites par cette méthode ne permettent pas de résoudre les problèmes en trois dimensions. Une variante de cette méthode est donc présentée afin de pouvoir être utilisée pour les problèmes en deux ou trois dimensions. Toutes ces méthodes sont testées sur des problèmes académiques simples et également sur des problèmes industriels multi-physiques.
218

Modélisation du comportement mécanique du bois lors du procédé de séchage conventionnel

Thibeault, France January 2008 (has links) (PDF)
La production de bois d'oeuvre passe nécessairement par l'étape de séchage du bois afin d'assurer la stabilité de la teneur en humidité et des dimensions, d'améliorer les propriétés mécaniques et de répondre aux programmes de traitement à la chaleur selon les exigences du marché d'exportation. Cette étape de production entraînant une perte de qualité du produit due à la présence de courbure, des études sont envisagées dans le but d'analyser les phénomènes qui s'y rattachent dans l'optique d'en optimiser le procédé. À ce jour, les travaux réalisés ont permis de décrire les phénomènes thermo-hydriques du procédé, les lois de comportements thermo-hygro-mécaniques qui s'y rattachent ainsi que les phénomènes d'échanges de chaleur et de masse. De plus, les avancées technologiques au niveau d'outils numériques jumelés à l'accessibilité à d'importantes puissances de calcul permet aujourd'hui de résoudre des problèmes couplés multi-physiques complexes. L'objectif principal de ce projet est de représenter le comportement déformationnel d'une pièce de bois soumise aux échanges thermo-hydriques lors du procédé de séchage conventionnel. Cet objectif nécessite la création d'un modèle numérique permettant la simulation du comportement mécanique, l'utilisation d'un modèle thermo-hydrique adapté au contexte de séchage ainsi que d'une interface permettant le couplage entre les deux modèles. Le modèle mécanique permet ici de représenter les propriétés du bois telle la variation des propriétés en fonction de l'orientation des cernes du bois et de prendre en compte le caractère orthotrope du matériau. Le passage du point de saturation des ibres, le comportement élastomécanosorptif ainsi que le retrait sont considérés au sein des lois de comportement. Le problème global est non linéaire et résolu en régime transitoire. Le couplage entre les aspects thermo-hydriques et mécanique est réalisé en considérant température et humidité ixe sur chaque pas de temps pour la partie mécanique. La validation numérique a été réalisée à l'aide d'un problème complet de la littérature ce qui a permis d'appuyer la fiabilité de la démarche. En parallèle, un programme expérimental a été réalisé dans le but de cueillir des données sur le procédé permettant la validation du modèle thermo-hydrique dans un contexte d'une application industrielle d'une pièce de bois sous lestage. Une étude de sensibilité aura également permis de cerner l'importance de certains paramètres industriels sur la qualité du produit, en exemple le type de coupe et le phénomène de surséchage seront analysés.
219

Étude par éléments finis du préchauffage des cuves Hall-Héroult

Pilote, Simon January 2010 (has links) (PDF)
La durée de vie des cuves d'electrolyse est influencée par plusieurs facteurs qui jouent un rôle plus au moins important. Un des facteurs jouant un rôle prépondérant est le préchauffage de la cuve d'electrolyse, étape nécessaire avant que celle-ci commence sa production d'aluminium. Pour cette raison, la compréhension des phénomènes qui prennent place dans la cuve d'électrolyse est plus qu'importante pour améliorer ou optimiser le procédé existant. Conséquemment, ce travail de recherche, réalisé en partenariat avec la société Rio Tinto Alcan (RTA), porte sur le développement d'un modèle prédictif permettant la bonne représentation du comportement thermo-électro- mécanique d'une cuve d'électrolyse en phase de préchauffage. Les objectifs à plus long terme d'un tel projet consistent à fournir à l'industrie de l'aluminium un outil efficace qui leur assurera, dans un premier temps, une meilleure compréhension du comportement de la cuve mais également, d'en optimiser le fonctionnement. L'approche retenue consiste à effectuer une discrétisation par éléments finis d'un modèle quart de cuve Hall-Héroult avec prise en compte de la nature des matériaux ainsi que des interfaces de contact présentes dans la cuve. Des lois constitutives appropriées ainsi que les paramètres associés sont utilisées pour la plupart des matériaux et interfaces de contact. La stratégie de mise en régime de la cuve consiste à appliquer la totalité du courant au moment du préchauffage de la cuve d'électrolyse comme c'est le cas lors du démarrage des cuves PI55 chez RTA. La résolution est réalisée à l'aide d'une application spécialisée développée à l'aide de l'outil numérique FESh++. Ce noyau de calcul par élément finis, possédant une grande flexibilité ainsi qu'une grande robustesse, permet la résolution des problèmes transitoires multi-physiques avec prise en compte des interfaces de contact. Quant au modèle géométrique proprement dit, il est construit à l'aide du module de prétraitement du logiciel ANSYS et ce, via la construction d'un script intensément parametrise à l'aide du langage APDL. Le post-traitement des résultats est également réalisé dans le logiciel ANSYS. Dans un premier temps, une étude de sensibilité sur les coefficients de pénalisation de contact normaux a été réalisée et ce, afin de s'assurer de l'objectivité de ces derniers en regard de la solution tout en maintenant un temps de calcul raisonnable. La validation des résultats du modèle avec des données in situ fournies par RTA a également été réalisée avant l'analyse des résultats de préchauffage afin de s'assurer que le modèle est représentatif de la réalité. Les écarts entre les résultats du modèle et les données in situ disponibles sont très satisfaisants et démontre les capacités du modèle. Dans un deuxième temps, l'analyse des résultats après 24h de préchauffage ont permis de constater que si les conditions de préchauffage ne sont pas rigoureusement respectées, les possibilités d'infiltration peuvent être élevées. En effet, le haut niveau de cuisson de la pâte, les faibles pressions de contact entre les blocs cathodiques et la pâte ainsi que les contraintes principales maximales élevées sur les arêtes des blocs cathodiques sont des facteurs déterminants qui peuvent mener à des infiltrations si le scénario de préchauffage prévu n'est pas respecté. Un possible décollement a été observé au terme du préchauffage à l'intersection des petits joints et du grand joint de pâte. Une attention particulière en regard des différents mécanismes de déformations de la pâte (élastique, plastique, thermique et chimique) aura permis de constater l'intérêt de discerner l'effet de ces mécanismes durant le préchauffage. De plus, l'analyse des efforts dans le caisson et les berceaux a permis de constater l'absence de plastification dans l'acier durant le préchauffage et que les efforts les plus importants sont localisés au voisinage des fenêtres. Finalement, des recommandations sont proposées afin d'améliorer les performances du modèle quart de cuve actuel ainsi que pour orienter adéquatement les travaux à venir.
220

Modélisation et analyse des phénomènes aéroélastiques pour une pale d'éolienne

Tardif d'Hamonville, Thierry January 2009 (has links) (PDF)
Cette étude se concentre sur la modélisation de l'écoulement d'air autour d'un profil de pale. Elle se répartit en trois parties dédiées à l'étude aérodynamique et en une dernière partie sur la modélisation des phénomènes aéroélastiques. La première partie illustre l'importance du choix du domaine et l'impact des conditions limites, l'importance du maillage comprenant les dimensions de la couche limite et de la finesse des éléments. La deuxième partie compare différents modèles de turbulence (les modèles k-w, k-w BSL et k-u> SST) à travers leur construction, leur prédiction des coefficients aérodynamiques pour différents angles d'attaque, leur prédiction de la vitesse autour du profil et du coefficient de pression sur le profil. De la même manière, la troisième partie compare différents modèles de transitions appliquées au modèle k-w SST. La dernière partie met en lumière une modélisation des phénomènes aéroélastiques qui peuvent affecter un profil de pale d'éolienne grâce au couplage des logiciels CFX et ANSYS.

Page generated in 0.0624 seconds