• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A maré terrestre : aspectos teóricos e práticos /

Arana, Daniel. January 2020 (has links)
Orientador: Paulo de Oliveira Camargo / Resumo: Existem dados de estações de maré terrestre em todo território nacional que estiveram em operação nos últimos anos. Contudo cada região de coleta apresenta um ou mais efeitos geofísicos predominantes, causando uma heterogeneidade dos dados e abrindo a possibilidade para diversos estudos. A minimização de efeitos geofísicos em observações gravimétricas é um grande desafio na geração de modelos de maré terrestre. Desta forma, esta pesquisa tem como objetivo estudar as metodologias para correções das cargas atmosférica e oceânica nos diferentes cenários. A hipótese adotada nesta pesquisa é que a consideração do parâmetro temporal junto à análise espectral possibilita isolar a maré terrestre e as sobrecargas. A metodologia neste trabalho envolve três etapas: (1) o pré-processamento, (2) o processamento das observações gravimétricas e (3) a aplicação dos modelos de marés. As estações base do estudo são PPTE e NEIA, localizadas respectivamente nos municípios de Presidente Prudente - SP e Cananeia - SP, escolhidas em razão do comportamento distinto das cargas oceânicas nas duas regiões. A pesquisa fundamenta-se na decomposição por harmônicos esféricos e pelo uso de ondaletas na série temporal gravimétrica das duas estações. O pré-processamento dos dados foi minuciosamente realizado, destaca-se a detecção de um deslocamento temporal em parte dos dados gravimétricos de PPTE, que foram corrigidos com sucesso. Na etapa do processamento foram analisados os impactos das correções atmosfér... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: There are Earth tide data from stations across the country that have been in operation in recent years. However, each collection region has one or more predominant geophysical effects, causing a heterogeneity of data and opening the possibility for several studies. The minimization of geophysical effects in gravimetric observations is a major challenge in the generation of terrestrial tide models. Thus, this research aims to study the methodologies for correcting atmospheric and ocean loading in different scenarios. The hypothesis adopted in this research is that the consideration of the temporal parameter together with the spectral analysis makes it possible to isolate the terrestrial tide and the overloads. The methodology in this work involves three stages: (1) the pre-processing, (2) the processing of the gravimetric observations and (3) the application of the tidal models. The study stations are PPTE and NEIA, located respectively in the cities of Presidente Prudente - SP and Cananeia - SP, chosen due to the different behavior of ocean loading in the two regions. The research is based on the decomposition by spherical harmonics and the use of wavelets in the gravimetric time series of the two stations. The pre-processing of the data was meticulously carried out, highlighting the detection of a temporal displacement in part of the PPTE gravimetric data, which were successfully corrected. In the processing stage, the impacts of atmospheric and oceanic corrections were anal... (Complete abstract click electronic access below) / Doutor
2

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
3

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.

Page generated in 0.0322 seconds