1 |
RELATING GAS HYDRATE SATURATION TO DEPTH OF SULFATE-METHANE TRANSITIONBhatnagar, Gaurav, Chapman, Walter G., Hirasaki, George J., Dickens, Gerald R., Dugan, Brandon 07 1900 (has links)
Gas hydrate can precipitate in pore space of marine sediment when gas concentrations exceed
solubility conditions within a gas hydrate stability zone (GHSZ). Here we present analytical
expressions that relate the top of the GHSZ and the amount of gas hydrate within the GHSZ to the
depth of the sulfate-methane transition (SMT). The expressions are strictly valid for steady-state
systems in which (1) all gas is methane, (2) all methane enters the GHSZ from the base, and (3)
no methane escapes the top through seafloor venting. These constraints mean that anaerobic
oxidation of methane (AOM) is the only sink of gas, allowing a direct coupling of SMT depth to
net methane flux. We also show that a basic gas hydrate saturation profile can be determined from
the SMT depth via analytical expressions if site-specific parameters such as sedimentation rate,
methane solubility and porosity are known. We evaluate our analytical model at gas hydrate
bearing sites along the Cascadia margin where methane is mostly sourced from depth. The
analytical expressions provide a fast and convenient method to calculate gas hydrate saturation
for a given geologic setting.
|
2 |
Integrating Seismic Property Models with Gravity Data along the Cascadia ForearcRahul Bhattacharya (17547897) 04 December 2023 (has links)
<p dir="ltr">The Cascadia margin in the Pacific Northwest of US is characterized by the subduction of the young and warm Juan De Fuca beneath the North American plate. This region shows strong correlations in spatial heterogeneities in geophysical observations such as thickness of low shear wave velocity zones in the lower crust, tremors distribution, intraslab seismicity, topography, uplift rates, and Bouguer gravity anomalies. In this thesis, both 3D and 2.5D forward gravity modeling have been conducted to understand the composition of the materials at ~20-40 km along the Cascadia subduction margin, that can explain the spatial heterogeneities by linking them together.</p>
|
3 |
JOINT SEISMIC/ELECTRICAL EFFECTIVE MEDIUM MODELLING OF HYDRATE-BEARING MARINE SEDIMENTS AND AN APPLICATION TO THE VANCOUVER ISLAND MARGINEllis, M.H., Minshull, T.A., Sinha, M.C., Best, Angus I. 07 1900 (has links)
Remote determination of the hydrate content of marine sediments remains a challenging problem.
In the absence of boreholes, the most commonly used approach involves the measurement of Pwave
velocities from seismic experiments. A range of seismic effective medium methods has
been developed to interpret these velocities in terms of hydrate content, but uncertainties about
the pore-scale distribution of hydrate can lead to large uncertainties in this interpretation. Where
borehole geophysical measurements are available, electrical resistivity is widely used as a proxy
for hydrate content, and the measurement of resistivity using controlled source electromagnetic
methods shows considerable promise. However, resistivity is commonly related to hydrate
content using Archie’s law, an empirical relationship with no physical basis that has been shown
to fail for hydrate-bearing sediments. We have developed an electrical effective medium method
appropriate to hydrate-bearing sediments based on the application of a geometric correction to the
Hashin-Shrikman conductive bound, and tested this method by making resistivity measurements
on artificial sediments of known porosity. We have adapted our method to deal with anisotropic
grains such as clay particles, and combined it with a well-established seismic effective medium
method to develop a strategy for estimating the hydrate content of marine sediments based on a
combination of seismic and electrical methods. We have applied our approach to borehole
geophysical data from Integrated Ocean Drilling Program Expedition 311 on the Vancouver
Island margin. Hydrate saturations were determined from resistivity logs by adjusting the
geometric factor in areas of the log where hydrate was not present. This value was then used over
the entire resistivity log. Hydrate saturations determined using this method match well those
determined from direct measurements of the methane content of pressurized cores.
|
4 |
Non-linear Bayesian inversion of controlled source electromagnetic data offshore Vancouver Island, Canada, and in the German North SeaGehrmann, Romina 12 December 2014 (has links)
This thesis examines the sensitivity of the marine controlled source electromagnetic (CSEM) method to sub-seafloor resistivity structure, with a focus on gas hydrate and free gas occurrences. Different analysis techniques are applied with progressive sophistication to a series of studies based on simulated and measured data sets.
CSEM data are modelled in time domain for one-dimensional models with gas hydrate, free gas and/or permafrost occurrences. Linearized and non-linear inversion methods are considered to infer subsurface models from CSEM data.
One study applies forward modelling and singular value decomposition to estimate uncertainties for permafrost models of the Beaufort Sea. This simulation study analyzes the resolution of the CSEM data for shallow water depth which is a challenging case because the electromagnetic signature of the air-water boundary may mask the sub-seafloor response. The results reveal a blind window as a function of water depth in which the CSEM data are insensitive to the sub-seafloor structure. However, the CSEM data are sensitive to the top and the bottom of the permafrost with increasing uncertainties with depth.
The next study applies non-linear Bayesian inversion to CSEM data acquired in 2005/2006 on the Northern Cascadia margin to investigate sub-seafloor resistivity structure related to gas hydrate deposits and cold vents. Bayesian inversion provides a rigorous approach to estimate model parameters and uncertainties by probabilistically sampling of the parameter space. The resulting probability density function is interpreted here in terms of posterior median models, marginal and joint marginal probability densities for model parameters and credibility intervals.
The Bayesian information criterion is applied to determine the amount of structure (number of layers) that can be resolved by the data. The parameter space is sampled with the Metropolis-Hastings algorithm in principal-component space.
Non-linear, probabilistic inversion allows the analysis of unknown acquisition parameters such as time delays between receiver and transmitter clocks or unknown source amplitude.
The estimated posterior median models and credibility intervals from Bayesian CSEM inversion are compared to reflection seismic data to provide a more complete geological interpretation.
The CSEM data on the Northern Cascadia margin generally reveal a 1 to 3 layer sediment structure. Inversion results at the landward edge of the gas hydrate stability zone indicate a sediment unconformity as well as several potential cold vents which were previously unknown. The resistivities generally increase upslope due to sediment erosion along the slope. Inversion results on the middle slope infer several vent systems close to well-known Bullseye vent in agreement with ongoing interdisciplinary observations.
Finally, a trans-dimensional (trans-D) Bayesian inversion is applied to CSEM data acquired in 2012 in the German North Sea to investigate possible free gas occurrences.
Trans-D inversion treats the number of layers as an additional unknown sampled probabilistically in the inversion.
%over the parameter space by evaluating probabilistically the transition to a higher or lower number of interfaces.
Parallel tempering is applied to increase sampling efficiency and completeness.
Inversion results for the German North Sea yield resistivities at the seafloor which are typical for marine deposits, while resistivities at greater depth increase slightly and can be correlated with a transition from fine-grained marine deposits (Holocene age) to coarse-grained, glacial sediments (Pleistocene age), which is observed in a sediment core. The depths of layer interfaces estimated from CSEM inversion match the seismic reflector related to the contrast between the two depositional environments.
The CSEM survey targeted a strong, phase-reversed, inclined seismic reflector within the glacial sediments, potentially indicating free gas. While interface-depth estimates from CSEM inversion do not correlate closely with this reflector, resistivities are generally elevated above the strong seismic amplitudes and the thickness of the resistive layer follows the trend of the inclined reflector. However, the uncertainties of deeper interface depth estimates increase significantly and overlap with the targeted reflector at some of the measurement sites.
Relatively low resistivities of a third layer correlate with sediments of late-Miocene origin with a high gamma-ray count indicating an increased amount of fine-grained sediments with organic material. The interface at the bottom of the third layer has wide uncertainties which relates to the penetration limit of the CSEM array. / Graduate
|
5 |
GAS HYDRATES AND MAGNETISM: COMPARATIVE GEOLOGICAL SETTINGS FOR DIAGENETIC ANALYSISEsteban, Lionel, Enkin, Randolph J., Hamilton, Tark. 07 1900 (has links)
Geochemical processes associated with gas hydrate formation lead to the growth of iron
sulphides which have a geophysically-measurable magnetic signature. Detailed magnetic
investigation, complemented by petrological observations, were undertaken on cores from a
permafrost setting, the Mackenzie Delta (Canadian Northwest Territories) Mallik region, and
two marine settings, IODP Expedition 311 cores from the Cascadia margin off Vancouver
Island and the Indian National Gas Hydrate Program Expedition 1 from the Bengal Fan.
Stratigraphic profiles of the fine scale variations in bulk magnetic measurements correspond to
changes in lithology, grain size and pore fluid geochemistry which can be correlated on local to
regional scales. The lowest values of magnetic susceptibility are observed where iron has been
reduced to paramagnetic pyrite, formed in settings with high methane and sulphate or sulphide
flux, such as at methane vents. High magnetic susceptibility values are observed in sediments
which contain detrital magnetite, for example from glacial deposits, which has survived
diagenesis. Other high magnetic susceptibility values are observed in sediments in which the
ferrimagnetic iron-sulphide minerals greigite or smythite have been diagenetically introduced.
These minerals are mostly found outside the sediments which host gas hydrate. The mineral
textures and compositions indicate rapid disequilibrium crystallization. The unique physical
and geochemical properties of the environments where gas hydrates form, including the
availability of methane to fuel microbiological activity and the concentration of pore water
solutes during gas hydrate formation, lead to iron sulphide precipitation from solute-rich brines.
Magnetic surveying techniques help delineate anomalies related to gas hydrate deposits and the
diagenesis of magnetic iron minerals related to their formation. Detailed core logging
measurements and laboratory analyses of magnetic properties provide direct ties to original
lithology, petrophysical properties and diagenesis caused by gas hydrate formation.
|
6 |
Seismic structure, gas hydrate, and slumping studies on the Northern Cascadia margin using multiple migration and full waveform inversion of OBS and MCS dataYelisetti, Subbarao 05 November 2014 (has links)
The primary focus of this thesis is to examine the detailed seismic structure of the
northern Cascadia margin, including the Cascadia basin, the deformation front and
the continental shelf. The results of this study are contributing towards understanding
sediment deformation and tectonics on this margin. They also have important
implications for exploration of hydrocarbons (oil and gas) and natural hazards (submarine landslides, earthquakes, tsunamis, and climate change).
The first part of this thesis focuses on the role of gas hydrate in slope failure observed
from multibeam bathymetry data on a frontal ridge near the deformation front
off Vancouver Island margin using active-source ocean bottom seismometer (OBS)
data collected in 2010. Volume estimates (∼ 0.33 km^3) of the slides observed on this
margin indicate that these are capable of generating large (∼ 1 − 2 m) tsunamis.
Velocity models from travel time inversion of wide angle reflections and refractions
recorded on OBSs and vertical incidence single channel seismic (SCS) data were used
to estimate gas hydrate concentrations using effective medium modeling. Results indicate a shallow high velocity hydrate layer with a velocity of 2.0 − 2.1 km/s that
corresponds to a hydrate concentration of 40% at a depth of 100 m, and a bottom
simulating reflector (BSR) at a depth of 265 − 275 m beneath the seafloor (mbsf).
These are comparable to drilling results on an adjacent frontal ridge. Margin perpendicular normal faults that extend down to BSR depth were also observed on SCS
and bathymetric data, two of which coincide with the sidewalls of the slump indicating
that the lateral extent of the slump is controlled by these faults. Analysis of
bathymetric data indicates, for the first time, that the glide plane occurs at the same
depth as the shallow high velocity layer (100±10 mbsf). In contrast, the glide plane
coincides with the depth of the BSR on an adjacent frontal ridge. In either case, our
results suggest that the contrast in sediments strengthened by hydrates and overlying
or underlying sediments where there is no hydrate is what causing the slope failure
on this margin.
The second part of this dissertation focuses on obtaining the detailed structure
of the Cascadia basin and frontal ridge region using mirror imaging of few widely
spaced OBS data. Using only a small airgun source (120 cu. in.), our results indicate
structures that were previously not observed on the northern Cascadia margin. Specifically, OBS migration results show dual-vergence structure, which could be related to horizontal compression associated with subduction and low basal shear stress resulting from over-pressure. Understanding the physical and mechanical properties of the basal layer has important implications for understanding earthquakes on this margin.
The OBS migrated image also clearly shows the continuity of reflectors which enabled
the identification of thrust faults, and also shows the top of the igneous oceanic crust
at 5−6 km beneath the seafloor, which were not possible to identify in single-channel
and low-fold multi-channel seismic (MCS) data.
The last part of this thesis focuses on obtaining detailed seismic structure of the
Vancouver Island continental shelf from MCS data using frequency domain viscoacoustic
full waveform inversion, which is first of its kind on this margin. Anelastic
velocity and attenuation models, derived in this study to subseafloor depths of ∼ 2
km, are useful in understanding the deformation within the Tofino basin sediments,
the nature of basement structures and their relationship with underlying accreted
terranes such as the Crescent and the Pacific Rim terranes. Specifically, our results
indicate a low-velocity zone (LVZ) with a contrast of 200 m/s within the Tofino basin
sediment section at a depth 600 − 1000 mbsf over a lateral distance of 10 km. This
LVZ is associated with high attenuation values (0.015 − 0.02) and could be a result
of over pressured sediments or lithology changes associated with a high porosity layer
in this potential hydrocarbon environment. Shallow high velocities of 4 − 5 km/s
are observed in the mid-shelf region at depths > 1.5 km, which is interpreted as
the shallowest occurrence of the Eocene volcanic Crescent terrane. The sediment
velocities sharply increase about 10 km west of Vancouver Island, which probably
corresponds to the underlying transition to the Mesozoic marine sedimentary Pacific
Rim terrane. High attenuation values of 0.03 − 0.06 are observed at depths > 1 km,
which probably corresponds to increased clay content and the presence of mineralized
fluids. / Graduate / 0373 / 0372 / 0605 / subbarao@uvic.ca
|
7 |
Temporal Variations in the Compliance of Gas Hydrate FormationsRoach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time.
A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
|
8 |
Temporal Variations in the Compliance of Gas Hydrate FormationsRoach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time.
A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
|
Page generated in 0.0579 seconds