• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 12
  • 12
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The formation and evolution of elliptical galaxies

Brown, Richard Joseph Norman January 2003 (has links)
No description available.
2

Stellar Abundance Ratios in the Milky Way and their Implications for Nucleosynthesis

Griffith, Emily 30 September 2022 (has links)
No description available.
3

Temperature scales and the "lithium problem"

Hosford, A. January 2010 (has links)
The discovery of the Spite plateau in the abundances of 7Li for metal-poor stars led to the determination of an observationally deduced primordial lithium abundance. However, with the determination of the baryon density, Omega_B_h^2, from the Wilkinson Microwave Anisotropy Probe (WMAP) data, a discrepancy arose between observationally determined and theoretically determined abundances of 7Li. This is what has become known as the “lithium problem”. Of all the uncertain factors in determining a stellar Li abundance, the effective temperature is the most important. This thesis is concerned with determining an accurate effective temperature scale for metal-poor halo dwarfs, paying specific attention to eliminating any possible systematic errors. This is done by utilising the exponential term, Chi/T, of the Boltzmann equation. Two assumptions are adopted; firstly the simplifying assumptions of local thermodynamic equilibrium (LTE), and secondly the more sophisticated techniques of non-local thermodynamic equilibrium (NLTE). The temperature scales are compared to others derived using different techniques; a photometric scale, where I find comparable Teff in LTE and hotter temperatures by an average of ~ 150 K in NLTE; a scale derived using Balmer lines, for which I have comparable values in LTE and hotter Teff values, by typically 110 K – 160 K, in NLTE; and finally a scale derived using an infrared flux method (IRFM). Here I find their Teff values are hotter by ~ 250 K for LTE and ~ 190 K in NLTE. Lithium abundances are then calculated for the program stars and a mean Li abundance is derived. I find values ranging from A(Li) = 2.10 dex – 2.16 dex with the LTE scales and A(Li) = 2.19 dex – 2.21 dex for the NLTE scales. These mean Li abundances are compared to other observationally deduced abundances, for which I find comparable results in LTE and higher values in NLTE, and to the WMAP + big bang nucleosynthesis calculated Li abundance. I find that my new values are still considerably lower than the WMAP value and are therefore unable to reconcile the lithium problem. Second to this primary investigation, I use Ti as an independent test of the derived Teff values and log g’s. I find that Ti is not a useful constraint on the temperatures or, therefore, on the lithium problem. I also assess the impact of the new Teff scales on the different models of Galactic chemical evolution (GCE), comparing newly calculated abundances with GCE determined abundances. It was found that trends exist in several of the elements; however, these were not statistically relevant. Also a larger degree of scatter was found in the abundances compared to the Arnone et al. (2005). This scatter was not to the degree found in the Argast et al. (2000). Reasons for the differences have been discussed.
4

Deep R-Band Surface Photometry of NGC891

Miller, Eric January 1996 (has links)
No description available.
5

Stochastic Chemical Evolution : A Study of Scatter in Relative Elemental Abundances in Extremely Metal-poor Stars / Stokastisk grundämnestillväxt : En studie av spridningen i relativa grundämnesförekomster i extremt metallfattiga stjärnor

Karlsson, Torgny January 2004 (has links)
<p>Chemical evolution addresses the problem of the formation of the chemical elements and their evolution throughout the history of the universe. This thesis discusses in particular the chemical evolution in the young universe and what we may learn from the observations of the oldest stars. The present day production of carbon in the Galaxy is also discussed. Interstellar media of young, metal-poor, star-forming systems are expected to show large chemical abundance inhomogeneities due to local supernova explosions. These inhomogeneities are reflected in the surface abundances of the population of longlived, low-mass stars. A stochastic model of the chemical evolution in such systems is presented and used to study the metallicity distribution and the scatter in chemical abundance ratios. The model takes into account mixing of the enriched material by turbulent motions and cloud collisions in the interstellar medium as well as infall of pristine matter. The predicted metallicity distribution shows, in accordance with observations of extreme Pop II strars in the Galactic halo, a distinct cut-off at [Fe/H]~-4. However, the fraction of stars below [Fe/H]=-4 agrees with observatrion only if a population of metal-free stars (Pop III) was never able to form. The predicted scatter in abundance ratios is demonstrated to be crucially dependent on the as yet uncertain supernova yields and the relatively small star-to-star scatter is tentatively explained by the averaging of a large number of contributing supernovae and by the selection effects favouring contributions from supernovae in a certain mass range for the most metal-poor stars. Furthermore, stars enriched by one single supernova are predicted to be found in very narrow sequences in the abundance ratio diagrams (so called A/A diagrams). Verification of the existence of such features, called single supernova sequences, is observationally challenging. Abundance analysis of carbon was performed in a large sample of solar-type stars in the Galactic disk using the forbidden [C I] line at 8727 Å. A comparison between the relation of [C/O] with metallicity for the Galactic stars and that of dwarf irregular galaxies suggests that large amounts of carbon are produced today by massive, so called Wolf-Rayet stars. Low-mass stars are less important. This was also demonstrated by modelling the chemical evolution of carbon.</p>
6

On the Abundances of Li, Be and O in Metal-Poor Stars in the Galaxy

García Pérez, Ana Elia January 2005 (has links)
<p>Stellar atmospheres constitute excellent environments to study the chemical evolution of our Galaxy. The chemical composition of these atmospheres reflects the composition of the gas from where these stars were born. As the Galaxy evolves, the composition of the gas changes from being primordial (Big-Bang nucleosynthesis) to being enriched in heavy elements (stellar and interstellar nucleosynthesis). The abundances of fragile chemical elements can be affected by stellar mixing processes. Precise lithium, beryllium and oxygen abundance determinations in old stars are presented in this thesis. These determinations are based on the analysis of the observed spectra of a sample of thirteen metal-poor subgiant stars. According to stellar mixing theories, these stars are in a stellar evolutionary stage in which mixing by convection is expected. Abundances of fragile elements like lithium and beryllium are thus expected to be affected by such mixing processes. As a consequence of this, the abundances of these elements are discussed in a dilution context. Lithium and beryllium abundances are compared with the abundances of stars with similar characteristics but in a less evolved stellar phase so that mixing processes have not acted yet. As expected, our abundances seem to be depleted following reasonably well the standard predictions. Stellar abundances of oxygen should give an estimate of the oxygen contribution of core-collapse supernovae to the interstellar medium. However, there is poor agreement among the abundances determined from different atomic or molecular indicators in general. Abundances coming from three different indicators are compared in this thesis. The abundances determined from the O I infrared triplet lines at 777.1-5 nm give the poorest agreement among the three indicators. The abundances based on OH ultraviolet lines around 310 nm are lower for the subgiants in comparison with previous studies of main-sequence stars, becoming even lower than values based on the O I forbidden line at 630.03 nm. Still the most reliable indicator appears to be the O I forbidden line which suggests a plateau-like or only slowly increasing [O/Fe] towards lower [Fe/H]. In addition, the line formation of the Be II ultraviolet resonance lines at 313.0-1 nm, commonly used for abundance determinations purposes, is investigated under non-local thermodynamic equilibrium. We find that the common assumption of local thermodynamic equilibrium typically gives systematic errors of about 0.1 dex.</p>
7

Chemical Abundance Analysis of Population II Stars : The Summary Includes a Background in General Astronomy

Jonsell, Karin January 2005 (has links)
<p>We are made of stardust in the sense that most atomic nuclei around us have been formed by stars. Stars synthesise new elements and expel them to the interstellar medium, from which later new generations of stars are born. We can map this chemical evolution by analysing the atmospheric contents of old Galactic halo stars. I have done two such investigations. A vigourous debate is going on whether the oxygen-to-iron ratio varies strongly with the general metal-content of halo stars. In my first study, I made an abundance analysis of 43 halo stars, and found no support for such a variation. I have also found that there probably is a cosmic spread in the abundances of oxygen, magnesium, silicon, and calcium relative to iron for halo stars. This may be an indication that the halo was built up by subsystems with differences in the star formation rate. In my second study, I performed a thorough abundance analysis of the star HE0338-3945, which is strangely overabundant in both r- and s-elements. Several other stars have been found with abundance patterns curiously similar to this star, and I define new criteria for the class r+s stars. The abundance similarities among the r+s stars suggest a common formation scenario. However, as the s-elements usually are considered to be produced in binary systems of low mass, and r-elements in supernovae of Type II, this scenario is not obvious. In the article I discuss seven hypotheses, and several of them are dismissed.</p>
8

Stochastic Chemical Evolution : A Study of Scatter in Relative Elemental Abundances in Extremely Metal-poor Stars / Stokastisk grundämnestillväxt : En studie av spridningen i relativa grundämnesförekomster i extremt metallfattiga stjärnor

Karlsson, Torgny January 2004 (has links)
Chemical evolution addresses the problem of the formation of the chemical elements and their evolution throughout the history of the universe. This thesis discusses in particular the chemical evolution in the young universe and what we may learn from the observations of the oldest stars. The present day production of carbon in the Galaxy is also discussed. Interstellar media of young, metal-poor, star-forming systems are expected to show large chemical abundance inhomogeneities due to local supernova explosions. These inhomogeneities are reflected in the surface abundances of the population of longlived, low-mass stars. A stochastic model of the chemical evolution in such systems is presented and used to study the metallicity distribution and the scatter in chemical abundance ratios. The model takes into account mixing of the enriched material by turbulent motions and cloud collisions in the interstellar medium as well as infall of pristine matter. The predicted metallicity distribution shows, in accordance with observations of extreme Pop II strars in the Galactic halo, a distinct cut-off at [Fe/H]~-4. However, the fraction of stars below [Fe/H]=-4 agrees with observatrion only if a population of metal-free stars (Pop III) was never able to form. The predicted scatter in abundance ratios is demonstrated to be crucially dependent on the as yet uncertain supernova yields and the relatively small star-to-star scatter is tentatively explained by the averaging of a large number of contributing supernovae and by the selection effects favouring contributions from supernovae in a certain mass range for the most metal-poor stars. Furthermore, stars enriched by one single supernova are predicted to be found in very narrow sequences in the abundance ratio diagrams (so called A/A diagrams). Verification of the existence of such features, called single supernova sequences, is observationally challenging. Abundance analysis of carbon was performed in a large sample of solar-type stars in the Galactic disk using the forbidden [C I] line at 8727 Å. A comparison between the relation of [C/O] with metallicity for the Galactic stars and that of dwarf irregular galaxies suggests that large amounts of carbon are produced today by massive, so called Wolf-Rayet stars. Low-mass stars are less important. This was also demonstrated by modelling the chemical evolution of carbon.
9

On the Abundances of Li, Be and O in Metal-Poor Stars in the Galaxy

García Pérez, Ana Elia January 2005 (has links)
Stellar atmospheres constitute excellent environments to study the chemical evolution of our Galaxy. The chemical composition of these atmospheres reflects the composition of the gas from where these stars were born. As the Galaxy evolves, the composition of the gas changes from being primordial (Big-Bang nucleosynthesis) to being enriched in heavy elements (stellar and interstellar nucleosynthesis). The abundances of fragile chemical elements can be affected by stellar mixing processes. Precise lithium, beryllium and oxygen abundance determinations in old stars are presented in this thesis. These determinations are based on the analysis of the observed spectra of a sample of thirteen metal-poor subgiant stars. According to stellar mixing theories, these stars are in a stellar evolutionary stage in which mixing by convection is expected. Abundances of fragile elements like lithium and beryllium are thus expected to be affected by such mixing processes. As a consequence of this, the abundances of these elements are discussed in a dilution context. Lithium and beryllium abundances are compared with the abundances of stars with similar characteristics but in a less evolved stellar phase so that mixing processes have not acted yet. As expected, our abundances seem to be depleted following reasonably well the standard predictions. Stellar abundances of oxygen should give an estimate of the oxygen contribution of core-collapse supernovae to the interstellar medium. However, there is poor agreement among the abundances determined from different atomic or molecular indicators in general. Abundances coming from three different indicators are compared in this thesis. The abundances determined from the O I infrared triplet lines at 777.1-5 nm give the poorest agreement among the three indicators. The abundances based on OH ultraviolet lines around 310 nm are lower for the subgiants in comparison with previous studies of main-sequence stars, becoming even lower than values based on the O I forbidden line at 630.03 nm. Still the most reliable indicator appears to be the O I forbidden line which suggests a plateau-like or only slowly increasing [O/Fe] towards lower [Fe/H]. In addition, the line formation of the Be II ultraviolet resonance lines at 313.0-1 nm, commonly used for abundance determinations purposes, is investigated under non-local thermodynamic equilibrium. We find that the common assumption of local thermodynamic equilibrium typically gives systematic errors of about 0.1 dex.
10

Chemical Abundance Analysis of Population II Stars : The Summary Includes a Background in General Astronomy

Jonsell, Karin January 2005 (has links)
We are made of stardust in the sense that most atomic nuclei around us have been formed by stars. Stars synthesise new elements and expel them to the interstellar medium, from which later new generations of stars are born. We can map this chemical evolution by analysing the atmospheric contents of old Galactic halo stars. I have done two such investigations. A vigourous debate is going on whether the oxygen-to-iron ratio varies strongly with the general metal-content of halo stars. In my first study, I made an abundance analysis of 43 halo stars, and found no support for such a variation. I have also found that there probably is a cosmic spread in the abundances of oxygen, magnesium, silicon, and calcium relative to iron for halo stars. This may be an indication that the halo was built up by subsystems with differences in the star formation rate. In my second study, I performed a thorough abundance analysis of the star HE0338-3945, which is strangely overabundant in both r- and s-elements. Several other stars have been found with abundance patterns curiously similar to this star, and I define new criteria for the class r+s stars. The abundance similarities among the r+s stars suggest a common formation scenario. However, as the s-elements usually are considered to be produced in binary systems of low mass, and r-elements in supernovae of Type II, this scenario is not obvious. In the article I discuss seven hypotheses, and several of them are dismissed.

Page generated in 0.1514 seconds