• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Galaxy cluster mass estimation from stacked spectroscopic analysis

Farahi, Arya, Evrard, August E., Rozo, Eduardo, Rykoff, Eli S., Wechsler, Risa H. 21 August 2016 (has links)
We use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, M-sigma(lambda), derived from stacked pairwise spectroscopy of clusters with richness lambda. Using similar to 130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with m(i) < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes similar to 60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find aEuroln (M-200c)|lambda aEuro parts per thousand = ln (< M-30) + alpha(m) ln (lambda/30) with M-30 = 1.56 +/- 0.35 x 10(14) M-aS (TM) and alpha(m) = 1.31 +/- 0.06(stat) +/- 0.13(sys). Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.
2

Improving initial conditions for cosmological N -body simulations

Garrison, Lehman H., Eisenstein, Daniel J., Ferrer, Douglas, Metchnik, Marc V., Pinto, Philip A. 01 October 2016 (has links)
In cosmological N-body simulations, the representation of dark matter as discrete 'macroparticles' suppresses the growth of structure, such that simulations no longer reproduce linear theory on small scales near k(Nyquist). Marcos et al. demonstrate that this is due to sparse sampling of modes near k(Nyquist) and that the often-assumed continuum growing modes are not proper growing modes of the particle system. We develop initial conditions (ICs) that respect the particle linear theory growing modes and then rescale the mode amplitudes to account for growth suppression. These ICs also allow us to take advantage of our very accurate N-body code ABACUS to implement second-order Lagrangian perturbation theory (2LPT) in configuration space. The combination of 2LPT and rescaling improves the accuracy of the late-time power spectra, halo mass functions, and halo clustering. In particular, we achieve 1 per cent accuracy in the power spectrum down to k(Nyquist), versus k(Nyquist)/4 without rescaling or k(Nyquist)/13 without 2LPT, relative to an oversampled reference simulation. We anticipate that our 2LPT will be useful for large simulations where fast Fourier transforms are expensive and that rescaling will be useful for suites of medium-resolution simulations used in cosmic emulators and galaxy survey mock catalogues. Code to generate ICs is available at https://github.com/lgarrison/zeldovich-PLT.
3

Measuring subhalo mass in redMaPPer clusters with CFHT Stripe 82 Survey

Li, Ran, Shan, Huanyuan, Kneib, Jean-Paul, Mo, Houjun, Rozo, Eduardo, Leauthaud, Alexie, Moustakas, John, Xie, Lizhi, Erben, Thomas, Van Waerbeke, Ludovic, Makler, Martin, Rykoff, Eli, Moraes, Bruno 21 May 2016 (has links)
We use the shear catalogue from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier initial mass function and a truncated NFW model for the subhalo mass distribution, we find that the subhalo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius r(p), from M-sub/M-star = 4.43(-2.23)(+6.63) at r(p) is an element of [0.1, 0.3] h(-1) Mpc toM(sub)/M-star = 75.40(-19.09)(+19.73) at r(p) is an element of [0.6, 0.9] h(-1) Mpc. We also investigate the dependence of subhalo masses on stellar mass by splitting satellite galaxies into two stellar mass bins: 10 < log (M-star/h(-1) M-circle dot) < 10.5 and 11 < log (M-star/h(-1) M-circle dot) < 12. The best-fitting subhalomass of the more massive satellite galaxy bin is larger than that of the lessmassive satellites: log(M-sub/h(-1) M-circle dot) = 11.14(-0.73)(+0.66) (M-sub/M-star = 19.5(-17.9)(+19.8)) versus log(M-sub/h(-1) M-circle dot) = 12.38(-0.16)(+0.16) (M-sub/M-star = 21.1(-7.7)(+7.4)).
4

Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4–0.7

Zahedy, Fakhri S., Chen, Hsiao-Wen, Rauch, Michael, Wilson, Michelle L., Zabludoff, Ann 21 May 2016 (has links)
We present multisightline absorption spectroscopy of cool gas around three lensing galaxies at z = 0.4-0.7. These lenses have half-light radii r(e) = 2.6-8 kpc and stellar masses of log M-*/M-circle dot = 10.9-11.4, and therefore resemble nearby passive elliptical galaxies. The lensed QSO sightlines presented here occur at projected distances of d = 3-15 kpc (or d approximate to 1-2 r(e)) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r similar to r(e) and circumgalactic gas at larger radii r >> r(e) of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE 0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong MgII, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE 0047-1756, and in one of the two sightlines near the double lens for HE 1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of Delta v approximate to 300-600 km s(-1). The large ionic column densities, log N greater than or similar to 14, observed in two components suggest that these may be Lyman limit or damped Ly a absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform supersolar Fe/Mg ratio with a scatter of < 0.1 dex across the full Delta v range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r similar to r(e). We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multisightline approach provide a powerful tool to resolve the origin of chemically enriched cool gas in massive haloes.
5

Dynamics of Barred Galaxies in Triaxial Dark Matter Haloes / Dinâmica de galáxias barradas em halos triaxiais de matéria escura

Machado, Rubens Eduardo Garcia 05 October 2010 (has links)
Cosmological N-body simulations indicate that the dark matter haloes of galaxies should be generally triaxial. Yet, the presence of a baryonic disc is believed to modify the shape of the haloes. The goal of this thesis is to study how bar formation is affected by halo triaxiality and how, in turn, the presence of the bar influences the shape of the halo. We performed a series of collisionless and hydrodynamical numerical simulations, using elliptical discs as initial conditions. Triaxial halos tend to become more spherical and we show that part of the circularisation of the halo is due to disc growth, but part must be attributed to the formation of a bar. We find that the presence of gas in the disc is a more efficient factor than halo triaxiality in inhibiting the formation of a strong bar. / As simulações cosmológicas de N-corpos indicam que os halos de matéria escura das galáxias devem ser em geral triaxiais. Contudo, acredita-se que a presença de um disco bariônico seja capaz de alterar a forma do halo. O objetivo desta tese é o de estudar como a formação de barras é afetada pela triaxialidade do halo e como, por sua vez, a presença da barra influencia a forma do halo. Nós realizamos uma série de simulações numéricas acolisionais e hidrodinâmicas, utilizando discos elípticos como condições iniciais. Os halos triaxiais tendem a se tornar mais esféricos e nós mostramos que parte da circularização do halo é devida ao crescimento do disco, mas parte precisa ser atribuída à formação da barra. Notamos que a presença de gás no disco é um fator mais eficiente do que a triaxialidade do halo em inibir a formação de uma barra forte.
6

Dynamics of Barred Galaxies in Triaxial Dark Matter Haloes / Dinâmica de galáxias barradas em halos triaxiais de matéria escura

Rubens Eduardo Garcia Machado 05 October 2010 (has links)
Cosmological N-body simulations indicate that the dark matter haloes of galaxies should be generally triaxial. Yet, the presence of a baryonic disc is believed to modify the shape of the haloes. The goal of this thesis is to study how bar formation is affected by halo triaxiality and how, in turn, the presence of the bar influences the shape of the halo. We performed a series of collisionless and hydrodynamical numerical simulations, using elliptical discs as initial conditions. Triaxial halos tend to become more spherical and we show that part of the circularisation of the halo is due to disc growth, but part must be attributed to the formation of a bar. We find that the presence of gas in the disc is a more efficient factor than halo triaxiality in inhibiting the formation of a strong bar. / As simulações cosmológicas de N-corpos indicam que os halos de matéria escura das galáxias devem ser em geral triaxiais. Contudo, acredita-se que a presença de um disco bariônico seja capaz de alterar a forma do halo. O objetivo desta tese é o de estudar como a formação de barras é afetada pela triaxialidade do halo e como, por sua vez, a presença da barra influencia a forma do halo. Nós realizamos uma série de simulações numéricas acolisionais e hidrodinâmicas, utilizando discos elípticos como condições iniciais. Os halos triaxiais tendem a se tornar mais esféricos e nós mostramos que parte da circularização do halo é devida ao crescimento do disco, mas parte precisa ser atribuída à formação da barra. Notamos que a presença de gás no disco é um fator mais eficiente do que a triaxialidade do halo em inibir a formação de uma barra forte.

Page generated in 0.0661 seconds