• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097

Bowen, David V., Chelouche, Doron, Jenkins, Edward B., Tripp, Todd M., Pettini, Max, York, Donald G., Frye, Brenda L. 20 July 2016 (has links)
We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of rho = 48-165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Ly alpha absorption is detected along all sightlines and Si III lambda 1206 is found along the three sightlines with the smallest.; metal lines of C II, Si II, and Si IV are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H I disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known "dog-leg" stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a "typical" absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher-z studies.
2

Solving the conundrum of intervening strong Mg II absorbers towards gamma-ray bursts and quasars

Christensen, L., Vergani, S. D., Schulze, S., Annau, N., Selsing, J., Fynbo, J. P. U., de Ugarte Postigo, A., Cañameras, R., Lopez, S., Passi, D., Cortés-Zuleta, P., Ellison, S. L., D’Odorico, V., Becker, G., Berg, T. A. M., Cano, Z., Covino, S., Cupani, G., D’Elia, V., Goldoni, P., Gomboc, A., Hammer, F., Heintz, K. E., Jakobsson, P., Japelj, J., Kaper, L., Malesani, D., Møller, P., Petitjean, P., Pugliese, V., Sánchez-Ramírez, R., Tanvir, N. R., Thöne, C. C., Vestergaard, M., Wiersema, K., Worseck, G. 11 December 2017 (has links)
Previous studies have shown that the incidence rate of intervening strong Mg II absorbers towards gamma-ray bursts (GRBs) were a factor of 2-4 higher than towards quasars. Exploring the similar sized and uniformly selected legacy data sets XQ-100 and XSGRB, each consisting of 100 quasar and 81 GRB afterglow spectra obtained with a single instrument (VLT/X-shooter), we demonstrate that there is no disagreement in the number density of strong Mg II absorbers with rest-frame equivalent widths W-r(lambda 2796) > 1 angstrom towards GRBs and quasars in the redshift range 0.1 less than or similar to z less than or similar to 5. With large and similar sample sizes, and path length coverages of Delta z = 57.8 and 254 : 4 for GRBs and quasars, respectively, the incidences of intervening absorbers are consistent within 1 sigma uncertainty levels at all redshifts. For absorbers at z < 2.3, the incidence towards GRBs is a factor of 1.5 +/- 0.4 higher than the expected number of strong Mg II absorbers in Sloan Digital Sky Survey (SDSS) quasar spectra, while for quasar absorbers observed with X-shooter we find an excess factor of 1.4 +/- 0.2 relative to SDSS quasars. Conversely, the incidence rates agree at all redshifts with reported high-spectral-resolution quasar data, and no excess is found. The only remaining discrepancy in incidences is between SDSS Mg II catalogues and high-spectral-resolution studies. The rest-frame equivalent-width distribution also agrees to within 1 sigma uncertainty levels between the GRB and quasar samples. Intervening strong Mg II absorbers towards GRBs are therefore neither unusually frequent, nor unusually strong.
3

A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW REDSHIFT C iv ABSORBERS. III. THE MASS- AND ENVIRONMENT-DEPENDENT CIRCUMGALACTIC MEDIUM

Burchett, Joseph N., Tripp, Todd M., Bordoloi, Rongmon, Werk, Jessica K., Prochaska, J. Xavier, Tumlinson, Jason, Willmer, C. N. A., O’Meara, John, Katz, Neal 22 November 2016 (has links)
Using Hubble Space Telescope Cosmic Origins Spectrograph observations of 89 QSO sightlines through the Sloan Digital Sky Survey footprint, we study the relationships between C IV absorption systems and the properties of nearby galaxies, as well as the large-scale environment. To maintain sensitivity to very faint galaxies, we restrict our sample to 0.0015 < z < 0.015, which defines a complete galaxy survey to L (SIC) 0.01 L-* or stellar mass M-* (SIC) 10(8) M-circle dot. We report two principal findings. First, for galaxies with impact parameter rho < 1 r(vir), C IV detection strongly depends on the luminosity/stellar mass of the nearby galaxy. C IV is preferentially associated with galaxies with M-* > 10(9.5) M-circle dot; lower-mass galaxies rarely exhibit significant C IV absorption (covering fraction f(C) = 9(-6)(+12)% for 11 galaxies with M-* < 10(9.5) M-circle dot.). Second, C IV detection within the M-* > 10(9.5) M-circle dot. population depends on environment. Using a fixed-aperture environmental density metric for galaxies with rho < 160 kpc at z < 0.055, we find that 57(-13)(+12)% (8/14) of galaxies in low-density regions (regions with fewer than seven L > 0.15 L* galaxies within 1.5 Mpc) have affiliated C IV absorption; however, none (0/7) of the galaxies in denser regions show C IV. Similarly, the C IV detection rate is lower for galaxies residing in groups with dark matter halo masses of M-halo > 10(12.5) M-circle dot. In contrast to C IV, H. I is pervasive in the circumgalactic medium without regard to mass or environment. These results indicate that C IV absorbers with log N(C IV). (SIC) 13.5 cm(-2) trace the halos of M-* > 10(9.5) M-circle dot galaxies but also reflect larger-scale environmental conditions.
4

The Correlation between Halo Mass and Stellar Mass for the Most Massive Galaxies in the Universe

Tinker, Jeremy L., Brownstein, Joel R., Guo, Hong, Leauthaud, Alexie, Maraston, Claudia, Masters, Karen, Montero-Dorta, Antonio D., Thomas, Daniel, Tojeiro, Rita, Weiner, Benjamin, Zehavi, Idit, Olmstead, Matthew D. 24 April 2017 (has links)
We present measurements of the clustering of galaxies as a function of their stellar mass in the Baryon Oscillation Spectroscopic Survey. We compare the clustering of samples using 12 different methods for estimating stellar mass, isolating the method that has the smallest scatter at fixed halo mass. In this test, the stellar mass estimate with the smallest errors yields the highest amplitude of clustering at fixed number density. We find that the PCA stellar masses of Chen et al. clearly have the tightest correlation with halo mass. The PCA masses use the full galaxy spectrum, differentiating them from other estimates that only use optical photometric information. Using the PCA masses, we measure the large-scale bias as a function of M-* for galaxies with logM(*) >= 11.4, correcting for incompleteness at the low-mass end of our measurements. Using the abundance matching ansatz to connect dark matter halo mass to stellar mass, we construct theoretical models of b(M-*) that match the same stellar mass function but have different amounts of scatter in stellar mass at fixed halo mass, sigma(logM*). Using this approach, we find sigma(logM*) = 0.18(+0.01) (-0.02). This value includes both intrinsic scatter as well as random errors in the stellar masses. To partially remove the latter, we use repeated spectra to estimate statistical errors on the stellar masses, yielding an upper limit to the intrinsic scatter of 0.16 dex.
5

HYDROGEN EMISSION FROM THE IONIZED GASEOUS HALOS OF LOW-REDSHIFT GALAXIES

Zhang, Huanian, Zaritsky, Dennis, Zhu, Guangtun, Ménard, Brice, Hogg, David W. 21 December 2016 (has links)
Using a sample of nearly half a million galaxies, intersected by over 7 million lines of sight from the Sloan Digital Sky Survey Data Release 12, we trace H alpha + [N II] emission from a galactocentric projected radius, r(p), of 5 kpc to more than 100 kpc. The emission flux surface brightness is alpha r(p) 1.9 +/- 0.4. We obtain consistent results using only the Ha or [N II] flux. We measure a stronger signal for the bluer half of the target sample than for the redder half on small scales, r(p) < 20 kpc. We obtain a 3 sigma detection of H alpha + [N II] emission in the 50-100 kpc r(p) bin. The mean emission flux within this bin is (1.10 +/- 0.35) x 10(-20) erg cm(-2) s(-1) angstrom(-1), which corresponds to 1.87 x 10(-20) erg cm(-2) s(-1) arcsec(-2) or 0.0033 Rayleigh. This detection is 34 times fainter than a previous strict limit obtained using deep narrow-band imaging. The faintness of the signal demonstrates why it has been so difficult to trace recombination radiation out to large radii around galaxies. This signal, combined with published estimates of n(H), leads us to estimate the temperature of the gas to be 12,000 K, consistent with independent empirical estimates based on metal ion absorption lines and expectations from numerical simulations.
6

An Excess of Low-mass X-Ray Binaries in the Outer Halo of NGC 4472

van Haaften, Lennart M., Maccarone, Thomas J., Sell, Paul H., Mihos, J. Christopher, Sand, David J., Kundu, Arunav, Zepf, Stephen E. 17 January 2018 (has links)
We present new Chandra observations of the outer halo of the giant elliptical galaxy NGC 4472 (M49) in the Virgo Cluster. The data extend to 130 kpc (28'), and have a combined exposure time of 150 ks. After identifying optical counterparts using the Next Generation Virgo Cluster Survey to remove background active galactic nuclei and globular cluster (GC) sources, and correcting for completeness, we find that the number of field low-mass X-ray binaries (LMXBs) per unit stellar V-band light increases significantly with the galactocentric radius. Because the flux limit of the complete sample corresponds to the Eddington limit for neutron stars in NGC 4472, many of the similar to 90 field LMXBs in this sample could host black holes. The excess of field LMXBs at large galactocentric radii may be partially caused by natal kicks on black holes and neutron stars in binary systems in the inner part of the galaxy. Furthermore, because the metallicity in the halo of NGC 4472 strongly decreases toward larger galactocentric radii, the number of field LMXBs per unit stellar mass is anticorrelated with metallicity, opposite to what is observed in GCs. Another way to explain the spatial distribution of field LMXBs is therefore a reversed metallicity effect, although we have not identified a mechanism to explain this in terms of stellar and binary evolution.
7

The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs

Geha, Marla, Wechsler, Risa H., Mao, Yao-Yuan, Tollerud, Erik J., Weiner, Benjamin, Bernstein, Rebecca, Hoyle, Ben, Marchi, Sebastian, Marshall, Phil J., Muñoz, Ricardo, Lu, Yu 14 September 2017 (has links)
We present the survey strategy and early results of the "Satellites Around Galactic Analogs" (SAGA) Survey. The SAGA. Survey's goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy (M-r < -12.3). We define a Milky Way analog based on K-band luminosity and local environment. Here, we present satellite luminosity functions for eight Milky-Way-analog galaxies between 20 and 40. Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to r(o) < 20.75 using low-redshift gri color criteria. We have discovered a total of 25 new satellite galaxies: 14. new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky-Way-analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are 5 Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way's satellite galaxies.
8

HST Detection of Extended Neutral Hydrogen in a Massive Elliptical at z = 0.4

Zahedy, Fakhri S., Chen, Hsiao-Wen, Rauch, Michael, Zabludoff, Ann 08 September 2017 (has links)
We report the first detection of extended neutral hydrogen (H I) gas in the interstellar medium (ISM) of a massive elliptical galaxy beyond z similar to 0. The observations utilize the doubly lensed images of QSO HE 0047-1756 at z(QSO) = 1.676 as absorption-line probes of the ISM in the massive (M-star approximate to 10(11) M-circle dot) elliptical lens at z = 0.408, detecting gas at projected distances of d = 3.3 and 4.6 kpc on opposite sides of the lens. Using the Space Telescope Imaging Spectrograph, we obtain UV absorption spectra of the lensed QSO and identify a prominent flux discontinuity and associated absorption features matching the Lyman series transitions at z = 0.408 in both sightlines. The H I column density is log N(H I)= 19.6-19.7 at both locations across the lens, comparable to what is seen in 21 cm images of nearby ellipticals. The H I gas kinematics are well-matched with the kinematics of the Fe II absorption complex revealed in ground-based echelle data, displaying a large velocity shear of approximate to 360 km s(-1) across the galaxy. We estimate an ISM Fe abundance of 0.3-0.4 solar at both locations. Including likely dust depletions increases the estimated Fe abundances to solar or supersolar, similar to those of the hot ISM and stars of nearby ellipticals. Assuming 100% covering fraction of this Fe-enriched gas, we infer a total Fe mass of M-cool(Fe) similar to (5-8) x 10(4) M-circle dot in the cool ISM of the massive elliptical lens, which is no more than 5% of the total Fe mass observed in the hot ISM.
9

Quasars and Low Surface Brightness Galaxies as Probes of Dark Matter / Kvasarer och ytljussvaga galaxer som redskap för att studera den mörka materian

Zackrisson, Erik January 2005 (has links)
<p>Most of the matter in the Universe appears to be in some form which does not emit or absorb light. While evidence for the existence of this dark matter has accumulated over the last seventy years, its nature remains elusive. In this thesis, quasars and low surface brightness galaxies (LSBGs) are used to investigate the properties of the dark matter. </p><p>Quasars are extremely bright light sources which can be seen over vast distances. These cosmic beacons may be used to constrain dark matter in the form of low-mass, compact objects along the line of sight, as such objects are expected to induce brightness fluctuations in quasars through gravitational microlensing effects. Using a numerical microlensing model, we demonstrate that the uncertainty in the typical size of the optical continuum-emitting region in quasars represents the main obstacle in this procedure. We also show that, contrary to claims in the literature, microlensing fails to explain the observed long-term optical variability of quasars. Here, quasar distances are inferred from their redshifts, which are assumed to stem from the expansion of the Universe. Some astronomers do however defend the view that quasar redshifts could have a different origin. A number of potential methods for falsifying claims of such non-cosmological redshifts are proposed. </p><p>As the ratio of dark to luminous matter is known to be unusually high in LSBGs, these objects have become the prime targets for probing dark matter halos around galaxies. Here, we use spectral evolutionary models to constrain the properties of the stellar populations in a class of unusually blue LSBGs. Using rotation curve data obtained at the ESO Very Large Telescope, we also investigate the density profiles of their dark halos. We find our measurements to be inconsistent with the predictions of the currently favoured cold dark matter scenario.</p>
10

Quasars and Low Surface Brightness Galaxies as Probes of Dark Matter / Kvasarer och ytljussvaga galaxer som redskap för att studera den mörka materian

Zackrisson, Erik January 2005 (has links)
Most of the matter in the Universe appears to be in some form which does not emit or absorb light. While evidence for the existence of this dark matter has accumulated over the last seventy years, its nature remains elusive. In this thesis, quasars and low surface brightness galaxies (LSBGs) are used to investigate the properties of the dark matter. Quasars are extremely bright light sources which can be seen over vast distances. These cosmic beacons may be used to constrain dark matter in the form of low-mass, compact objects along the line of sight, as such objects are expected to induce brightness fluctuations in quasars through gravitational microlensing effects. Using a numerical microlensing model, we demonstrate that the uncertainty in the typical size of the optical continuum-emitting region in quasars represents the main obstacle in this procedure. We also show that, contrary to claims in the literature, microlensing fails to explain the observed long-term optical variability of quasars. Here, quasar distances are inferred from their redshifts, which are assumed to stem from the expansion of the Universe. Some astronomers do however defend the view that quasar redshifts could have a different origin. A number of potential methods for falsifying claims of such non-cosmological redshifts are proposed. As the ratio of dark to luminous matter is known to be unusually high in LSBGs, these objects have become the prime targets for probing dark matter halos around galaxies. Here, we use spectral evolutionary models to constrain the properties of the stellar populations in a class of unusually blue LSBGs. Using rotation curve data obtained at the ESO Very Large Telescope, we also investigate the density profiles of their dark halos. We find our measurements to be inconsistent with the predictions of the currently favoured cold dark matter scenario.

Page generated in 0.0342 seconds