• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • Tagged with
  • 51
  • 51
  • 23
  • 16
  • 14
  • 13
  • 13
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Submillimeter Array 12CO (2-1) Imaging of the NGC 6946 Giant Molecular Clouds

Wu, Ya-Lin, Sakamoto, Kazushi, Pan, Hsi-An 07 April 2017 (has links)
We present a (CO)-C-12 (2-1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc are generally more luminous and turbulent, some of which have luminosities > 10(6)K. km. s(-1) pc(2) and velocity dispersions > 10. km s(-1). Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the MilkyWay and other disk galaxies, GMC mass function of NGC 6946 has a shallower slope (index > -2) in the inner region, and a steeper slope (index < -2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those inM33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.
2

A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914

Annis, J., Soares-Santos, M., Berger, E., Brout, D., Chen, H., Chornock, R., Cowperthwaite, P. S., Diehl, H. T., Doctor, Z., Drlica-Wagner, A., Drout, M. R., Farr, B., Finley, D. A., Flaugher, B., Foley, R. J., Frieman, J., Gruendl, R. A., Herner, K., Holz, D., Kessler, R., Lin, H., Marriner, J., Neilsen, E., Rest, A., Sako, M., Smith, M., Smith, N., Sobreira, F., Walker, A. R., Yanny, B., Abbott, T. M. C., Abdalla, F. B., Allam, S., Benoit-Lévy, A., Bernstein, R. A., Bertin, E., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cenko, S. B., Crocce, M., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Desai, S., Dietrich, J. P., Eifler, T. F., Evrard, A. E., Fernandez, E., Fischer, J., Fong, W., Fosalba, P., Fox, D. B., Fryer, C. L., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gutierrez, G., Honscheid, K., James, D. J., Karliner, I., Kasen, D., Kent, S., Kuehn, K., Kuropatkin, N., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., Martini, P., Metzger, B. D., Miller, C. J., Miquel, R., Mohr, J. J., Nichol, R. C., Nord, B., Ogando, R., Peoples, J., Petravic, D., Plazas, A. A., Quataert, E., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Santiago, B., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Stebbins, A., Swanson, M. E. C., Tarle, G., Thaler, J., Thomas, R. C., Tucker, D. L., Vikram, V., Wechsler, R. H., Weller, J., Wester, W. 27 May 2016 (has links)
The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(2) of the localization area, including 38 deg(2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.
3

THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097

Bowen, David V., Chelouche, Doron, Jenkins, Edward B., Tripp, Todd M., Pettini, Max, York, Donald G., Frye, Brenda L. 20 July 2016 (has links)
We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of rho = 48-165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Ly alpha absorption is detected along all sightlines and Si III lambda 1206 is found along the three sightlines with the smallest.; metal lines of C II, Si II, and Si IV are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H I disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known "dog-leg" stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a "typical" absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher-z studies.
4

SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. IV. ANOMALOUS BEHAVIOR OF THE BROAD ULTRAVIOLET EMISSION LINES IN NGC 5548

Goad, M. R., Korista, K. T., Rosa, G. De, Kriss, G. A., Edelson, R., Barth, A. J., Ferland, G. J., Kochanek, C. S., Netzer, H., Peterson, B. M., Bentz, M. C., Bisogni, S., Crenshaw, D. M., Denney, K. D., Ely, J., Fausnaugh, M. M., Grier, C. J., Gupta, A., Horne, K. D., Kaastra, J., Pancoast, A., Pei, L., Pogge, R. W., Skielboe, A., Starkey, D., Vestergaard, M., Zu, Y., Anderson, M. D., Arévalo, P., Bazhaw, C., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brewer, B. J., Cackett, E. M., Carini, M. T., Croxall, K. V., Bontà, E. Dalla, Lorenzo-Cáceres, A. De, Dietrich, M., Efimova, N. V., Evans, P. A., Filippenko, A. V., Flatland, K., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Grupe, D., Hall, P. B., Hicks, S., Horenstein, D., Hutchison, T., Im, M., Jensen, J. J., Joner, M. D., Jones, J., Kaspi, S., Kelly, B. C., Kennea, J. A., Kim, M., Kim, S. C., Klimanov, S. A., Lee, J. C., Leonard, D. C., Lira, P., MacInnis, F., Manne-Nicholas, E. R., Mathur, S., McHardy, I. M., Montouri, C., Musso, R., Nazarov, S. V., Norris, R. P., Nousek, J. A., Okhmat, D. N., Papadakis, I., Parks, J. R., Pott, J.-U., Rafter, S. E., Rix, H.-W., Saylor, D. A., Schimoia, J. S., Schnülle, K., Sergeev, S. G., Siegel, M., Spencer, M., Sung, H.-I., Teems, K. G., Treu, T., Turner, C. S., Uttley, P., Villforth, C., Weiss, Y., Woo, J.-H., Yan, H., Young, S., Zheng, W.-K. 03 June 2016 (has links)
During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for similar to 60-70 days, starting similar to 75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterized by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission line flux deficits occurred for the high ionization, collisionally excited lines C IV and Si IV(+O IV]), and also He II(+O III]), while the anomaly in Ly alpha was substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with E-ph > 54 eV relative to those near 13.6 eV. We suggest two plausible mechanisms for the observed behavior: (i) temporary obscuration of the ionizing continuum incident upon broad line region (BLR) clouds by a moving veil of material lying between the inner accretion disk and inner (BLR), perhaps resulting from an episodic ejection of material from the disk, or (ii) a temporary change in the intrinsic ionizing continuum spectral energy distribution resulting in a deficit of ionizing photons with energies > 54 eV, possibly due to a transient restructuring of the Comptonizing atmosphere above the disk. Current evidence appears to favor the latter explanation.
5

A SPECTROSCOPICALLY CONFIRMED DOUBLE SOURCE PLANE LENS SYSTEM IN THE HYPER SUPRIME-CAM SUBARU STRATEGIC PROGRAM

Tanaka, Masayuki, Wong, Kenneth C., More, Anupreeta, Dezuka, Arsha, Egami, Eiichi, Oguri, Masamune, Suyu, Sherry H., Sonnenfeld, Alessandro, Higuchi, Ryo, Komiyama, Yutaka, Miyazaki, Satoshi, Onoue, Masafusa, Oyamada, Shuri, Utsumi, Yousuke 25 July 2016 (has links)
We report the serendipitous discovery of HSC J142449-005322, a double source plane lens system in the Hyper Suprime-Cam Subaru Strategic Program. We dub the system Eye of Horus. The lens galaxy is a very massive early-type galaxy with stellar mass of similar to 7 x 10(11) M-circle dot located at z(L) = 0.795. The system exhibits two arcs/rings with clearly different colors, including several knots. We have performed spectroscopic follow-up observations of the system with FIRE on Magellan. The outer ring is confirmed at z(S2) = 1.988 with multiple emission lines, while the inner arc and counterimage is confirmed at z(S1) = 1.302. This makes it the first double source plane system with spectroscopic redshifts of both sources. Interestingly, redshifts of two of the knots embedded in the outer ring are found to be offset by Delta z = 0.002 from the other knots, suggesting that the outer ring consists of at least two distinct components in the source plane. We perform lens modeling with two independent codes and successfully reproduce the main features of the system. However, two of the lensed sources separated by similar to 0.7 arcsec cannot be reproduced by a smooth potential, and the addition of substructure to the lens potential is required to reproduce them. Higher-resolution imaging of the system will help decipher the origin of this lensing feature and potentially detect the substructure.
6

THE WISE DETECTION OF AN INFRARED ECHO IN TIDAL DISRUPTION EVENT ASASSN-14li

Jiang, Ning, Dou, Liming, Wang, Tinggui, Yang, Chenwei, Lyu, Jianwei, Zhou, Hongyan 29 August 2016 (has links)
We report the detection of a significant infrared variability of the nearest tidal disruption event (TDE) ASASSN-14li using Wide-field Infrared Survey Explorer and newly released Near-Earth Object WISE Reactivation data. In comparison with the quiescent state, the infrared flux is brightened by 0.12 and 0.16 mag in the W1 (3.4 mu m) and W2 (4.6 mu m) bands at 36 days after the optical discovery (or similar to 110 days after the peak disruption date). The flux excess is still detectable similar to 170 days later. Assuming that the flare-like infrared emission is from the dust around the black hole, its blackbody temperature is estimated to be similar to 2.1 x 10(3) K, slightly higher than the dust sublimation temperature, indicating that the dust is likely located close to the dust sublimation radius. The equilibrium between the heating and radiation of the dust claims a bolometric luminosity of similar to 10(43) - 10(45) erg s(-1), comparable with the observed peak luminosity. This result has for the first time confirmed the detection of infrared emission from the dust echoes of TDEs.
7

Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

Edelson, R., Gelbord, J., Cackett, E., Connolly, S., Done, C., Fausnaugh, M., Gardner, E., Gehrels, N., Goad, M., Horne, K., McHardy, I., Peterson, B. M., Vaughan, S., Vestergaard, M., Breeveld, A., Barth, A. J., Bentz, M., Bottorff, M., Brandt, W. N., Crawford, S. M., Bonta, E. Dalla, Emmanoulopoulos, D., Evans, P., Jaimes, R. Figuera, Filippenko, A. V., Ferland, G., Grupe, D., Joner, M., Kennea, J., Korista, K. T., Krimm, H. A., Kriss, G., Leonard, D. C., Mathur, S., Netzer, H., Nousek, J., Page, K., Romero-Colmenero, E., Siegel, M., Starkey, D. A., Treu, T., Vogler, H. A., Winkler, H., Zheng, W. 03 May 2017 (has links)
Swift monitoring of NGC 4151 with an similar to 6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3-50 keV) and six in the ultraviolet (UV)/optical (1900-5500 angstrom). The three hardest X-ray bands (> 2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging similar to 3-4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to lead the optical by similar to 0.5-1 days. This combination of greater than or similar to 3 day lags between the X-rays and UV and less than or similar to 1 day lags within the UV/optical appears to rule out the "lamp-post" reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner & Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.
8

PHAT. XIX. The Ancient Star Formation History of the M31 Disk

Williams, Benjamin F., Dolphin, Andrew E., Dalcanton, Julianne J., Weisz, Daniel R., Bell, Eric F., Lewis, Alexia R., Rosenfield, Philip, Choi, Yumi, Skillman, Evan, Monachesi, Antonela 12 September 2017 (has links)
We map the star formation history across M31 by fitting stellar evolution models to color-magnitude diagrams of each 83 '' x 83 '' (0.3 x 1.4 kpc, deprojected) region of the Panchromatic Hubble Andromeda Treasury (PHAT) survey outside of the innermost 6' x 12' portion. We find that most of the star formation occurred prior to similar to 8 Gyr ago, followed by a relatively quiescent period until similar to 4 Gyr ago, a subsequent star formation episode about 2 Gyr ago, and a return to relative quiescence. There appears to be little, if any, structure visible for populations with ages older than 2 Gyr, suggesting significant mixing since that epoch. Finally, assuming a Kroupa initial mass function from 0.1 to 100 M-circle dot, we find that the total amount of star formation over the past 14 Gyr in the area over which we have fit models is 5 x 10(10) M-circle dot. Fitting the radial distribution of this star formation and assuming azimuthal symmetry, (1.5 +/- 0.2). x 10(11) M-circle dot of stars has formed in the M31 disk as a whole, (9 +/- 2) x 10(10). M-circle dot of which has likely survived to the present after accounting for evolutionary effects. This mass is about one-fifth of the total dynamical mass of M31.
9

Probing the cold and warm molecular gas in the Whirlpool Galaxy: Herschel SPIRE-FTS observations of the central region of M51 (NGC 5194)

Schirm, M. R. P., Wilson, C. D., Kamenetzky, J., Parkin, T. J., Glenn, J., Maloney, P., Rangwala, N., Spinoglio, L., Baes, M., Boselli, A., Cooray, A., De Looze, I., Fernández-Ontiveros, J. A., Karczewski, O. Ł., Wu, R. 10 1900 (has links)
We present Herschel Spectral and Photometric Imaging Receiver (SPIRE)-Fourier Transform Spectrometer (FTS) intermediate-sampled mapping observations of the central similar to 8 kpc (similar to 150 arcsec) of M51, with a spatial resolution of 40 arcsec. We detect four (CO)-C-12 transitions (J = 4-3 to J = 7-6) and the [C i] P-3(2)-P-3(1) and P-3(1)-P-3(0) transitions. We supplement these observations with ground-based observations of (CO)-C-12 J = 1-0 to J = 3-2 and perform a two-component non-local thermodynamic equilibrium analysis. We find that the molecular gas in the nucleus and centre regions has a cool component (T-kin similar to 10-20 K) with a moderate but poorly constrained density (n(H-2) similar to 10(3)-10(6) cm(-3)), as well as significant molecular gas in a warmer (T-kin similar to 300-3000 K), lower density (n(H-2) similar to 10(1.6)-10(2.5) cm(-3)) component. We compare our CO line ratios and calculated densities along with ratios of CO to total infrared luminosity to a grid of photon-dominated region (PDR) models and find that the cold molecular gas likely resides in PDRs with a field strength of G(0) similar to 10(2). The warm component likely requires an additional source of mechanical heating, from supernovae and stellar winds or possibly shocks produced in the strong spiral density wave. When compared to similar two-component models of other star-forming galaxies published as part of the Very Nearby Galaxies Survey (Arp 220, M82 and NGC 4038/39), M51 has the lowest density for the warm component, while having a warm gas mass fraction that is comparable to those of Arp 220 and M82, and significantly higher than that of NGC 4038/39.
10

PROPER MOTION OF THE LEO II DWARF GALAXY BASED ON HUBBLE SPACE TELESCOPE IMAGING

Piatek, Slawomir, Pryor, Carlton, Olszewski, Edward W. 17 November 2016 (has links)
This article reports a measurement of the proper motion of Leo II, a dwarf galaxy that is a likely satellite of the Milky Way, based on imaging with the Hubble Space Telescope and Wide Field Camera. 3. The measurement uses compact background galaxies as standards of rest in both channels of the camera for two distinct pointings of the telescope, as well as a QSO in one channel for each pointing, resulting in the weighted average of six measurements. The measured proper motion in the the equatorial coordinate system is (mu(alpha), mu(delta))= (-6.9 +/- 3.7, -8.7 +/- 3.9) mas century(-1) and in the Galactic coordinate system it is (mu(l), mu(b)) = (6.2 +/- 3.9, -9.2 +/- 3.7) mas. century(-1). The implied space velocity with respect to the Galactic center is (Pi, Theta, Z) =(-37 +/- 38, 117 +/- 43, 40 +/- 16) km s(-1) or, expressed in Galactocentric radial and tangential components, (V-r, V-tan) = (21.9 +/- 1.5, 127 +/- 42) km s(-1). The space velocity implies that the instantaneous orbital inclination is 68 degrees, with a 95% confidence interval of (66 degrees, 80 degrees). The measured motion supports the hypothesis that Leo. II, Leo. IV, Leo. V, Crater. 2, and the globular cluster Crater fell into the Milky Way as a group.

Page generated in 0.0992 seconds