21 |
The Impact of Non-thermal Processes in the Intracluster Medium on Cosmological Cluster ObservablesBattaglia, Nicholas Ambrose 05 January 2012 (has links)
In this thesis we describe the generation and analysis of hydrodynamical simulations of galaxy clusters and their intracluster
medium (ICM), using large cosmological boxes to generate large samples, in conjunction with individual cluster computations. The
main focus is the exploration of the non-thermal processes in the ICM and the effect they have on the interpretation of observations used for cosmological constraints. We provide an introduction to the cosmological structure formation framework for our computations and an overview of the numerical simulations and
observations of galaxy clusters. We explore the cluster magnetic field observables through radio relics, extended entities in the ICM characterized by their of diffuse radio emission. We show that statistical quantities such as radio relic luminosity
functions and rotation measure power spectra are sensitive to magnetic field models. The spectral index of the radio relic emission
provides information on structure formation shocks, {\it e.g.}, on their Mach number. We develop a coarse grained stochastic model of active galaxy nucleus (AGN) feedback in clusters and show the impact of such inhomogeneous feedback on the thermal pressure profile. We explore variations in
the pressure profile as a function of cluster mass, redshift, and radius and provide a constrained fitting function for this profile. We measure the degree of the non-thermal pressure in the gas from
internal cluster bulk motions and show it has an impact on the slope and scatter of the Sunyaev-Zel'dovich (SZ) scaling relation. We also find that the gross shape of the ICM, as characterized by scaled moment of inertia tensors, affects the SZ scaling relation. We demonstrate that the shape and the amplitude of the SZ angular power spectrum is sensitive to AGN feedback, and this affects the cosmological parameters determined from high resolution ACT and SPT cosmic microwave background data. We compare analytic, semi-analytic, and simulation-based methods for calculating the SZ power spectrum, and characterize their
differences. All the methods must rely, one way or another, on high resolution large-scale hydrodynamical simulations with varying assumptions for modelling the gas of the sort presented here. We show how our results can be used to interpret the latest ACT and SPT power spectrum results. We provide an outlook for the future, describing follow-up work we are undertaking to further advance the theory of cluster science.
|
22 |
The Impact of Non-thermal Processes in the Intracluster Medium on Cosmological Cluster ObservablesBattaglia, Nicholas Ambrose 05 January 2012 (has links)
In this thesis we describe the generation and analysis of hydrodynamical simulations of galaxy clusters and their intracluster
medium (ICM), using large cosmological boxes to generate large samples, in conjunction with individual cluster computations. The
main focus is the exploration of the non-thermal processes in the ICM and the effect they have on the interpretation of observations used for cosmological constraints. We provide an introduction to the cosmological structure formation framework for our computations and an overview of the numerical simulations and
observations of galaxy clusters. We explore the cluster magnetic field observables through radio relics, extended entities in the ICM characterized by their of diffuse radio emission. We show that statistical quantities such as radio relic luminosity
functions and rotation measure power spectra are sensitive to magnetic field models. The spectral index of the radio relic emission
provides information on structure formation shocks, {\it e.g.}, on their Mach number. We develop a coarse grained stochastic model of active galaxy nucleus (AGN) feedback in clusters and show the impact of such inhomogeneous feedback on the thermal pressure profile. We explore variations in
the pressure profile as a function of cluster mass, redshift, and radius and provide a constrained fitting function for this profile. We measure the degree of the non-thermal pressure in the gas from
internal cluster bulk motions and show it has an impact on the slope and scatter of the Sunyaev-Zel'dovich (SZ) scaling relation. We also find that the gross shape of the ICM, as characterized by scaled moment of inertia tensors, affects the SZ scaling relation. We demonstrate that the shape and the amplitude of the SZ angular power spectrum is sensitive to AGN feedback, and this affects the cosmological parameters determined from high resolution ACT and SPT cosmic microwave background data. We compare analytic, semi-analytic, and simulation-based methods for calculating the SZ power spectrum, and characterize their
differences. All the methods must rely, one way or another, on high resolution large-scale hydrodynamical simulations with varying assumptions for modelling the gas of the sort presented here. We show how our results can be used to interpret the latest ACT and SPT power spectrum results. We provide an outlook for the future, describing follow-up work we are undertaking to further advance the theory of cluster science.
|
23 |
Probing the Environmental Dependence of Star Formation in Satellite Galaxies using Orbital KinematicsOman, Kyle Andrew January 2013 (has links)
(Abridged) Physical processes regulating star formation in satellite galaxies represent an area of ongoing research, but the projected nature of observed coordinates makes separating different populations of satellites (with different processes at work) difficult. The present-day phase space coordinates of a satellite galaxy carry information about its orbital history, which can then be compared to its star formation history (SFH). This is expected to reveal both a trigger time and timescale for environmental quenching. Finally, this can be related back to the physical process(es) regulating star formation in high density environments.
We use merger trees from the MultiDark Run 1 N-body simulation to compile a catalogue of satellite orbits in cluster environments. We parameterize the orbital history by the time since crossing within 2.5 virial radii of the cluster centre and use our catalogue to estimate the probability density over a range of this parameter given a set of projected phase space coordinates. We show that different populations of satellite haloes occupy (semi-)distinct regions of (projected) phase space. We generalize this result by producing a probability distribution function (PDF) of possible infall times at every point in projected phase space.
We apply our method to determining the infall time PDFs of a large sample of observed cluster satellite candidates from the Sloan Digital Sky Survey. We use galaxy colour as a proxy for SFH and model the distribution of satellite galaxy colours as two gaussian populations. We derive a Markov chain Monte-Carlo method to obtain the colour distribution as a function of the time since infall into the cluster environment. Our implementation of this method is still being tuned, but we use a second simpler (but much cruder) method to obtain an estimate of the evolution of the colour distribution. Our results are suggestive of a quenching process that begins within perhaps ±1 Gyr of virial radius crossing and which slows after pericentric passage. We stress that results obtained with this second method come with important caveats.
|
24 |
Observations of nearby Galaxy Clusters with the Fermi Large Area Telescope : Towards the first Gamma Rays from ClustersZimmer, Stephan January 2015 (has links)
Galaxy clusters are the most massive bound systems known in the Universe and are believed to have formed through large scale structure formation. They host relativistic cosmic-ray (CR) populations and are gravitationally bound by large amounts of Dark Matter (DM), both providing conditions in which high-energy gamma rays may be produced either via CR interactions with the intracluster medium or through the annihilation or decay of DM particles. Prior to the launch of the Fermi satellite, predictions were optimistic that these sources would be established as γ-ray-bright objects by observations through its prime instrument, the Large Area Telescope (LAT). Yet, despite numerous efforts, even a single firm cluster detection is still pending. This thesis presents a number of studies based on data taken by the LAT over its now seven year mission aiming to discover these γ rays. Using a joint likelihood technique, we study the γ-ray spectra of a sample of nearby clusters searching for a CR-induced signal due to hadronic interactions in the intracluster medium. While we find excesses in some individual targets, we attribute none to the cluster. Hence, we constrain the maximum injection efficiency of hadrons being accelerated in structure formation shocks and the fraction of CR-to-thermal pressure. We also perform a refined search targeting the Coma cluster specifically due to its large variety of existing observations in other wavebands. In the latter case we find weak indications of an excess which however falls below the detection threshold. Because the cluster emission we consider is inherently extended, we need to take into account the imperfect modeling of the foreground emission, which may be particularly difficult such as is the case with the Virgo cluster. Here, we assess the systematics associated with the foreground uncertainties and derive limits based on an improved background model of the region. For the first time we derive limits on the γ-ray flux from CR and DM-interactions in which we take into account the dynamical state of the system. For DM we also include the contribution from substructure. The DM domain is further explored by searching for line-like features as they arise from the annihilation of DM into two photons in a large sample of clusters, including Virgo and Coma. Finding no evidence for γ-ray lines, we derive limits on the DM annihilation cross section that are roughly a factor 10 (100) above that derived from observations of the galactic center assuming an optimistic (conservative) scenario regarding the boost due to DM substructure. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Submitted.</p>
|
25 |
Probing the Environmental Dependence of Star Formation in Satellite Galaxies using Orbital KinematicsOman, Kyle Andrew January 2013 (has links)
(Abridged) Physical processes regulating star formation in satellite galaxies represent an area of ongoing research, but the projected nature of observed coordinates makes separating different populations of satellites (with different processes at work) difficult. The present-day phase space coordinates of a satellite galaxy carry information about its orbital history, which can then be compared to its star formation history (SFH). This is expected to reveal both a trigger time and timescale for environmental quenching. Finally, this can be related back to the physical process(es) regulating star formation in high density environments.
We use merger trees from the MultiDark Run 1 N-body simulation to compile a catalogue of satellite orbits in cluster environments. We parameterize the orbital history by the time since crossing within 2.5 virial radii of the cluster centre and use our catalogue to estimate the probability density over a range of this parameter given a set of projected phase space coordinates. We show that different populations of satellite haloes occupy (semi-)distinct regions of (projected) phase space. We generalize this result by producing a probability distribution function (PDF) of possible infall times at every point in projected phase space.
We apply our method to determining the infall time PDFs of a large sample of observed cluster satellite candidates from the Sloan Digital Sky Survey. We use galaxy colour as a proxy for SFH and model the distribution of satellite galaxy colours as two gaussian populations. We derive a Markov chain Monte-Carlo method to obtain the colour distribution as a function of the time since infall into the cluster environment. Our implementation of this method is still being tuned, but we use a second simpler (but much cruder) method to obtain an estimate of the evolution of the colour distribution. Our results are suggestive of a quenching process that begins within perhaps ±1 Gyr of virial radius crossing and which slows after pericentric passage. We stress that results obtained with this second method come with important caveats.
|
26 |
Investigating the Dark Universe through Gravitational LensingRiehm, Teresa January 2011 (has links)
A variety of precision observations suggest that the present universe is dominated by some unknown components, the so-called dark matter and dark energy. The distribution and properties of these components are the focus of modern cosmology and we are only beginning to understand them. Gravitational lensing, the bending of light in the gravitational field of a massive object, is one of the predictions of the general theory of relativity. It has become an ever more important tool for investigating the dark universe, especially with recent and coming advances in observational data. This thesis studies gravitational lensing effects on scales ranging over ten orders of magnitude to probe very different aspects of the dark universe. Implementing a matter distribution following the predictions of recent simulations, we show that microlensing by a large population of massive compact halo objects (MACHOs) is unlikely to be the source of the observed long-term variability in quasars. We study the feasibility of detecting the so far elusive galactic dark matter substructures, the so-called “missing satellites”, via millilensing in galaxies close to the line-of-sight to distant light sources. Finally, we utilise massive galaxy clusters, some of the largest structures known in the universe, as gravitational telescopes in order to detect distant supernovae, thereby gaining insight into the expansion history of the universe. We also show, how such observations can be used to put constraints on the dark matter component of these galaxy clusters. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Submitted.
|
27 |
O aglomerado de galáxias RXC J1504 - 0248 / The Galaxy Cluster RXC J1507 048Ana Cecilia Soja 30 November 2011 (has links)
O objetivo deste trabalho foi determinar a massa do aglomerado de galáxias RXC J1504-0248, localizado em z = 0.215, através da análise de lentes fracas, e comparar os resultados com aqueles obtidos em trabalhos anteriores através da análise de raios-X. Imagens do aglomerado foram obtidos nas bandas r\', g\' e i\' com o detector GMOS do telescópio Gemini Sul. A partir dessas imagens, contruímos um catálogo de objetos no campo usando o software Sextractor (SE) (Bertin e Arnouts, 1996). Este software também foi utilizado para classificá-los como galáxias ou estrelas. Foram identificadas 172 galáxias neste campo, que também foram detectadas no Data Release 7 do Sloan Digital Sky Survey (SDSS). Estas galáxias foram então usadas para obter uma calibração fotométrica das imagens, comparando as magnitudes instrumentais e do SDSS nas mesmas bandas. Após a calibração fotométrica, e através da comparação com imagens do CFHTLS obtidas em cores semelhantes, as galáxias foram classificadas como membros de cluster, foreground ou background, a partir de sua posição nos diagramas cor-cor e cor-magnitude. A reconstrução da massa do aglomerado através da análise de lentes gravitacionais foi realizada em duas etapas. Na primeira, foi utilizado o software IM2SHAPE, desenvolvido por Bridle et al. (1998), que modela os objetos, adicionando até três gaussianas, cada uma definida por seis parâmetros: as coordenadas do centro do objeto, x0 e y0, a elipticidade e, o ângulo de posição , o produto dos semi-eixos maior e menor ab, e a amplitude A. Inicialmente, o programa foi executado apenas para as estrelas do campo, com o objetivo de se obter uma estimativa da distribuição da PSF. A estimativa foi então utilizado como entrada para a análise das galáxias. Na segunda etapa, para estimar a massa do aglomerado foi utilizado o programa LENSENT, desenvolvido por Marshall et al. (2002), cujos parâmetros de entrada são a elipticidade das galáxias de fundo e seus erros. Na técnica de lentes gravitacionais fracas, a dependência radial da deformação das galáxias de fundo permite determinar o perfil de massa do aglomerado. Para estimar a massa, ajustamos um perfil de uma Esfera Isotérmica Singular (SIS, na sigla em inglês), e determinamos o valor da massa dentro de um raio de 3Mpc, 1.3 ± 0.6 x 10¹ Msol. O resultado é consistente com o obtido por Bohringer et al., 2005, 1.7 x 10¹ Msol, através da análise em raios-X. Comparando o mapa de distribuição de luminosidade e da emissão de raios-X concluímos que eles são muito semelhantes à distribuição superficial de massa, resultado que indica equilíbrio. / In this work we studied the galaxy cluster RXC J1504-0248, at z=0.215, from images in the bands r\', g\' and i\' obtained with Gemini South telescope. The photometric calibration was performed by comparison with field objects identified in the Sloan Digital Sky Survey (SDSS). From the analysis of color-color and color-magnitude diagrams, galaxies in the field were then divided into cluster members, background and foreground objects. We determined the PSF using the IM2SHAPE program \\cite{Bridle98}. These results enabled us to obtain the cluster projected mass distribution through a weak lensing analysis performed with the LENSENT program \\cite{Marshall02}. We also shown that the cluster luminosity distribution and the X-ray emission are consistent with the mass map. Using a SIS model, we estimated the mass of the cluster, obtaining 1.3 x 10¹ Msun, consistent with the mass obtained in a previous X-ray analysis, 1.7 x 10¹ Msun, by \\cite{Bohringer05}.
|
28 |
Radio active galactic nuclei in galaxy clusters: feedback, merger signatures, and cluster tracersPaterno-Mahler, Rachel Beth 28 November 2015 (has links)
Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.
|
29 |
A comparison of the effects of local and global environment on galaxy evolution in low redshift galaxy clustersHoward, Brittany 03 January 2020 (has links)
Using the redMaPPer catalog of 21709 galaxy clusters and photometric information for 455946 galaxies from SDSS DR8, we study the effects of local and global environment on galaxy evolution within clusters in the redshift range 0.2 ≤ z ≤ 0.5 and the richness range 20 ≤ λ ≤ 236. We use cluster richness λ as a proxy for global environment and cluster-centric radius dBCG to represent the local environ- ment within clusters. We measure giant-to-dwarf ratio (GDR) which gives insight regarding the composition of the red sequence, and we measure red fraction which holds information about the rate at which galaxies falling into clusters cease to form new stars and build up the red sequence in a phenomenon called quenching. We ob- serve that red fraction decreases with redshift, increases with λ, and decreases with dBCG. GDR, meanwhile, decreases with redshift, does not vary significantly with λ, and decreases with dBCG. All together, our results tell the story of clusters starting with bright, massive galaxies which accrete smaller and smaller galaxies over time. The galaxies are quickly quenched upon entering clusters environment. We observe that most quenching occurs on smaller richness scales than our data covers, and that by the time clusters have grown to the richnesses redMaPPer is sensitive to, ram pressure stripping is likely to be the dominant quenching mechanism. / Graduate
|
30 |
Galaxy Overdensities and Emission Line Galaxies in the Faint Infrared Grism SurveyJanuary 2019 (has links)
abstract: Learning how properties of galaxies such as star formation, galaxy interactions, chemical composition, and others evolve to produce the modern universe has long been a goal of extragalactic astronomy. In recent years, grism spectroscopy from the Hubble Space Telescope (HST) has provided a means to study these properties with spectroscopy while avoiding the limitations of ground-based observation. In this dissertation, I present several studies wherein I used HST G102 grism spectroscopy from the Faint Infrared Grism Survey (FIGS) to investigate these fundamental properties of galaxies and how they interact and evolve. In the first study, I combined the grism spectra with broadband photometry to produce a catalog of redshifts with improved accuracy, reducing the median redshift error from 3\% to 2\%. With this redshift catalog, I conducted a systematic search for galaxy overdensities in the FIGS fields, producing a list of 24 significant candidates. In the second study, I developed a method for identifying emission line galaxy (ELG) candidates from continuum-subtracted 1D spectra, and identified 71 ELGs in one FIGS field. In matching MUSE/VLT spectra, I measured the [OIII]$\lambda$4363 emission line for 14 FIGS ELGs, and used this to measure their $T_e$-based gas-phase metallicities. These ELGs show a low-metallicity offset on the Mass-Metallicity Relation, and I demonstrated that this offset can be explained by recent star formation. In the third study, I expanded the ELG search to all four FIGS fields, identifying 208 H$\alpha$, [OIII]$\lambda\lambda$4959,5007, and [OII]$\lambda\lambda$3727,3729 line emitters. I compiled a catalog of line fluxes, redshifts, and equivalent widths. I combined this catalog with the overdensity study to investigate a possible relationship between line luminosity, star formation, and an ELG's environment. In the fourth study, I usde 15 FIGS H$\alpha$ emitters and 49 ``green pea'' line emitters to compare H$\alpha$ and the far-UV continuum as tracers of star formation. I explored a correlation between the H$\alpha$-FUV ratio and the ratio of [OIII]$\lambda\lambda$4959,5007 to [OII]$\lambda\lambda$3727,3729 and its implications for star formation history. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2019
|
Page generated in 0.0631 seconds