1 |
On fundamental groups of Galois closures of generic projectionsLiedtke, Christian. January 2004 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 2004. / Includes bibliographical references (p. 87-89).
|
2 |
Exponential sums, hypersurfaces with many symmetries and Galois representationsChênevert, Gabriel, January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Mathematics and Statistics. Title from title page of PDF (viewed 2009/06/08). Includes bibliographical references.
|
3 |
Central simple algebras, cup-products and class field theoryNewton, Rachel Dominica January 2012 (has links)
No description available.
|
4 |
Relèvements cristallins de représentations galoisiennes / Crystalline raising in Galois representationsMuller, Alain 04 November 2013 (has links)
L’objet de cette thèse est de démontrer que pour certaines représentations p : GK −! GLn(Fp) continues de GK, il existe un relèvement r : GK −! Gln (Zp) de p en une représentation cristalline. C’est un problème purement local, tout comme les méthodes utilisées pour le résoudre. / In this thesis, we prove that certain representations of the absolute Galois group of a finite extension of Qp with coefficients in Fp lift to crystalline representation with coefficients in Zp.
|
5 |
Computations in Galois Cohomology and Hecke AlgebrasDavis, Tara C. 09 1900 (has links)
<p> We study two objects: an ideal of a Hecke algebra, and a pairing in Galois cohomology.</p> <p> Let h be the Hecke algebra of cusp forms of weight 2, level n, and a fixed Dirichlet character modulo n generated by all Hecke operators, where n is an odd prime p or a product of two distinct odd primes N and p. We study the Eisenstein I ideal of h. We wrote a computer
program to test whether Up - 1 generates this ideal, where Up is the pth Hecke operator in h. We found many cases of n and the character so that Up - 1 alone generates I. On the other hand, we found one example with N = 3 and p = 331 where Up - 1 does not generate I.</p> <p> Let K = Q(μn) be the nth cyclotomic field. Let S be the set of primes above p in K, and let G_K,S be the Galois group of the maximal extension of K unramified outside S. We study a pairing on cyclotomic p-units that arises from the cup product on H1(G_K,S, μp). This pairing takes values in a Gal(K/Q)-eigenspace of the p-part of the class group of K. Sharifi has conjectured that this pairing is surjective. We studied this pairing in detail by imposing linear relations on the possible pairing values. We discovered many values of n and the character such that these relations single out a unique nontrivial possibility for the pairing, up to a possibly zero scalar.</p> <p> Sharifi showed in [S2] that, under an assumption on Bernoulli numbers, the element Up - 1 generates the Eisenstein ideal I if and only if pairing with the single element p is surjective. In particular, in the instances for which we found a unique nontrivial possibility for the pairing, then if Up - 1 generates I, we know that the scalar up to
which it is determined cannot be zero.</p> / Thesis / Master of Science (MSc)
|
6 |
Invariants cohomologiques des groupes de Coxeter finis / Cohomological invariants of finite Coxeter groups.Ducoat, Jerôme 22 October 2012 (has links)
Cette thèse traite des invariants cohomologiques en cohomologie galoisienne des groupes de Coxeter finis en caractéristique nulle. On établit d'abord un principe général d'annulation vérifié par tout invariant cohomologique d'un groupe de Coxeter fini sur un corps de caractéristique nulle suffisamment grand. On utilise ensuite ce principe pour déterminer tous les invariants cohomologiques des groupes de Weyl de type classique à coefficients modulo 2 sur un corps de caractéristique nulle. / This PhD thesis deals with cohomological invariants in Galois cohomology of finite Coxeter groups in characteristic zero. We first state a general vanishing principle for the cohomological invariants of a finite Coxeter group over a sufficiently large field of characteristic zero. We then use this principle to determine all the cohomological invariants of the Weyl groups of classical type with coefficients modulo 2 over a field of characteristic zero.
|
7 |
Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques / The Brauer group of homogeneous spaces with non connected stabilizer and arithmetical applicationsLucchini Arteche, Giancarlo 29 September 2014 (has links)
Dans cette thèse, on s'intéresse au groupe de Brauer non ramifié des espaces homogènes à stabilisateur non connexe et à ses applications arithmétiques. On développe notamment différentes formules de nature algébrique et/ou arithmétique permettant de calculer explicitement, tant sur un corps fini que sur un corps de caractéristique 0, la partie algébrique du groupe de Brauer non ramifié d'un espace homogène G\G' sous un groupe linéaire G' semi-simple simplement connexe à stabilisateur fini G, le tout en donnant des exemples de calculs que l'on peut faire avec ces formules. Pour ce faire, on démontre au préalable (à l'aide d'un théorème de Gabber sur les altérations) un résultat décrivant la partie de torsion première à p du groupe de Brauer non ramifié d'une variété V lisse et géométriquement intègre sur un corps fini ou sur un corps global de caractéristique p au moyen de l'évaluation des éléments de Br(V) sur ses points locaux. Les formules pour un stabilisateur fini sont ensuite généralisées au cas d'un stabilisateur G quelconque via une réduction de la cohomologie galoisienne du groupe G à celle d'un certain sous-quotient fini. Enfin, pour K un corps global et G un K-groupe fini résoluble, on démontre sous certaines hypothèses sur une extension déployant G que l'espace homogène V:=G\G' avec G' un K-groupe semi-simple simplement connexe vérifie l'approximation faible (ces hypothèses assurant la nullité du groupe de Brauer non ramifié algébrique). On utilise une version plus précise de ce résultat pour démontrer ensuite le principe de Hasse pour des espaces homogènes X sous un K-groupe G' semi-simple simplement connexe à stabilisateur géométrique fini et résoluble, sous certaines hypothèses sur le K-lien défini par X. / This thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X.
|
8 |
Elementos da teoria algébrica das formas quadráticas e de seus anéis graduados / Elements of the algebraic theory of quadratic forms and its graded ringsSantos, Duilio Ferreira 27 November 2015 (has links)
Neste trabalho procuramos realizar uma apresentação autocontida sobre os conceitos da teoria algébrica de formas quadráticas e sobre os anéis graduados que surgiram no desenvolvimento desta teoria. Iniciamos procurando esclarecer o sentido da equivalência entre as várias acepções do conceito de forma quadrática. Após a apresentação de ingredientes e resultados geométricos, fazemos um extrato da teoria dos anéis de Witt, conceito que originou a moderna teoria algébrica de formas quadráticas. Disponibilizamos os elementos fundamentais para a formulação das teorias de cohomologia, nos concentrado no desenvolvimento da teoria de cohomologia profinita e, sobretudo, galoisiana. Descrevemos os funtores K0, K1 e K2 da K-teoria clássica e também a K-teoria de Milnor, que é mais adequada para formular questões sobre formas quadráticas. Finalizamos o trabalho com a apresentação de alguns conceitos da Teoria dos Grupos Especiais, uma codificação em primeira-ordem da teoria algébrica das formas quadráticas e exemplificamos sua importância, fornecendo um extrato da prova realizada por Dickmann-Miraglia da conjectura de Marshall sobre assinaturas, que se baseia fortemente nesta teoria. / In this work I try to provide a self-contained presentation on the concepts of algebraic theory of quadratic forms and on the graded rings that have emerged in the development of this theory. I started trying to clarify the meaning of \"equivalence\"between the various meanings of the concept of quadratic form. After the presentation of geometrical ingredients and results, we make an extract of the theory of Witt rings, a concept that originated the modern algebraic theory of quadratic forms. It is provided the key elements for the formulation of cohomology theories, focusing on the development of profinite cohomology theory and, especially, on galoisian cohomology. Are described the functors K0, K1 and K2 of classical K-theory and also the Milnor K-theory, which is more appropriate to formulate questions about quadratic forms. The dissertation is finished with the presentation of some concepts of the Theory of Special Groups, a first-order encoding of algebraic theory of quadratic forms, and with an example its importance by providing an extract of proof by Dickmann-Miraglia of the Marshalls conjecture on signatures, which relies heavily on this theory.
|
9 |
Elementos da teoria algébrica das formas quadráticas e de seus anéis graduados / Elements of the algebraic theory of quadratic forms and its graded ringsDuilio Ferreira Santos 27 November 2015 (has links)
Neste trabalho procuramos realizar uma apresentação autocontida sobre os conceitos da teoria algébrica de formas quadráticas e sobre os anéis graduados que surgiram no desenvolvimento desta teoria. Iniciamos procurando esclarecer o sentido da equivalência entre as várias acepções do conceito de forma quadrática. Após a apresentação de ingredientes e resultados geométricos, fazemos um extrato da teoria dos anéis de Witt, conceito que originou a moderna teoria algébrica de formas quadráticas. Disponibilizamos os elementos fundamentais para a formulação das teorias de cohomologia, nos concentrado no desenvolvimento da teoria de cohomologia profinita e, sobretudo, galoisiana. Descrevemos os funtores K0, K1 e K2 da K-teoria clássica e também a K-teoria de Milnor, que é mais adequada para formular questões sobre formas quadráticas. Finalizamos o trabalho com a apresentação de alguns conceitos da Teoria dos Grupos Especiais, uma codificação em primeira-ordem da teoria algébrica das formas quadráticas e exemplificamos sua importância, fornecendo um extrato da prova realizada por Dickmann-Miraglia da conjectura de Marshall sobre assinaturas, que se baseia fortemente nesta teoria. / In this work I try to provide a self-contained presentation on the concepts of algebraic theory of quadratic forms and on the graded rings that have emerged in the development of this theory. I started trying to clarify the meaning of \"equivalence\"between the various meanings of the concept of quadratic form. After the presentation of geometrical ingredients and results, we make an extract of the theory of Witt rings, a concept that originated the modern algebraic theory of quadratic forms. It is provided the key elements for the formulation of cohomology theories, focusing on the development of profinite cohomology theory and, especially, on galoisian cohomology. Are described the functors K0, K1 and K2 of classical K-theory and also the Milnor K-theory, which is more appropriate to formulate questions about quadratic forms. The dissertation is finished with the presentation of some concepts of the Theory of Special Groups, a first-order encoding of algebraic theory of quadratic forms, and with an example its importance by providing an extract of proof by Dickmann-Miraglia of the Marshalls conjecture on signatures, which relies heavily on this theory.
|
10 |
Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura / Around the Zilber-Pink Conjecture for Shimura VarietiesRen, Jinbo 06 July 2018 (has links)
Dans cette thèse, nous nous intéressons à l'étude de l'arithmétique et de la géométrie des variétés de Shimura. Cette thèse s'est essentiellement organisée autour de trois volets. Dans la première partie, on étudie certaines applications de la théorie des modèles en théorie des nombres. En 2014, Pila et Tsimerman ont donné une preuve de la conjecture d'Ax-Schanuel pour la fonction j et, avec Mok, ont récemment annoncé une preuve de sa généralisation à toute variété de Shimura. Nous nous référons à cette généralisation comme à la conjecture d'Ax-Schanuel hyperbolique. Dans ce projet, nous cherchons à généraliser les idées de Habegger et Pila pour montrer que, sous un certain nombre d'hypothèses arithmétiques, la conjecture d'Ax-Schanuel hyperbolique implique, par une extension de la stratégie de Pila-Zannier, la conjecture de Zilber-Pink pour les variétés de Shimura. Nous concluons en vérifiant toutes ces hypothèses arithmétiques à l'exception d'une seule dans le cas d'un produit de courbes modulaires, en admettant la conjecture dite des grandes orbites de Galois. Il s'agit d'un travail en commun avec Christopher Daw. La seconde partie est consacrée à un résultat cohomologique en direction de la conjecture de Zilber-Pink. Étant donné un groupe algébrique semi-simple sur un corps de nombres F contenu dans ℝ, nous démontrons que deux sous-groupes algébriques semi-simples définis sur F sont conjugués sur F, si et seulement s'il le sont sur une extension réelle finie de F de degré majoré indépendamment des sous-groupes choisis. Il s'agit d'un travail en commun avec Mikhail Borovoi et Christopher Daw. La troisième partie étudie la distribution des variétés de Shimura compactes. On rappelle qu'une variété de Shimura S de dimension 1 est toujours compacte sauf si S est une courbe modulaire. Nous généralisons cette observation en définissant une fonction de hauteur dans l'espace des variétés de Shimura associée à un groupe réductif réel donné. Dans le cas des groupes unitaires, on prouve que la densité des variétés de Shimura non-compactes est nulle. / In this thesis, we study some arithmetic and geometric problems for Shimura varieties. This thesis consists of three parts. In the first part, we study some applications of model theory to number theory. In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j-function and, with Mok, have recently announced a proof of its generalization to any (pure) Shimura variety. We refer to this generalization as the hyperbolic Ax-Schanuel conjecture. In this article, we show that the hyperbolic Ax-Schanuel conjecture can be used to reduce the Zilber-Pink conjecture for Shimura varieties to a problem of point counting. We further show that this point counting problem can be tackled in a number of cases using the Pila-Wilkie counting theorem and several arithmetic conjectures. Our methods are inspired by previous applications of the Pila-Zannier method and, in particular, the recent proof by Habegger and Pila of the Zilber-Pink conjecture for curves in abelian varieties. This is joint work with Christopher Daw. The second part is devoted to a Galois cohomological result towards the proof of the Zilber-Pink conjecture. Let G be a linear algebraic group over a field k of characteristic 0. We show that any two connected semisimple k-subgroups of G that are conjugate over an algebraic closure of kare actually conjugate over a finite field extension of k of degree bounded independently of the subgroups. Moreover, if k is a real number field, we show that any two connected semisimple k-subgroups of G that are conjugate over the field of real numbers ℝ are actually conjugate over a finite real extension of k of degree bounded independently of the subgroups. This is joint work with Mikhail Borovoi and Christopher Daw. Finally, in the third part, we consider the distribution of compact Shimura varieties. We recall that a Shimura variety S of dimension 1 is always compact unless S is a modular curve. We generalize this observation by defining a height function in the space of Shimura varieties attached to a fixed real reductive group. In the case of unitary groups, we prove that the density of non-compact Shimura varieties is zero.
|
Page generated in 0.063 seconds