• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ab-Initio and Molecular Dynamics Simulations Capturing the Thermodynamic, Kinetics, and Thermomechanical Behavior of Galvanized Low-Alloy Steel

Aslam, Imran 14 December 2018 (has links)
A seven-element Modified Embedded Atom Method (MEAM) potential comprising Fe, Mn, Si, C, Al, Zn, and O is developed by employing a hierarchical multiscale modeling paradigm to simulate low-alloy steels, inhibition layer, and galvanized coatings. Experimental information alongside first-principles calculations based on Density Functional Theory served as calibration data to upscale and develop the MEAM potential. For calibrating the single element potentials, the cohesive energy, lattice parameters, elastic constants, and vacancy and interstitial formation energies are used as target data. The heat of formation and elastic constants of binary compounds along with substitutional and interstitial formation energies serve as binary potential calibration data, while substitutional and interstitial pair binding energies aid in developing the ternary potential. Molecular dynamics simulations employing the developed potentials predict the thermal expansion coefficient, heat capacity, self-diffusion coefficients, thermomechanical stress-strain behavior, and solid-solution strengthening mechanisms for steel alloys comparable to those reported in the literature. Interfacial energies between the steel substrate, inhibition layer, and surface oxides shed light on the interfacial nanostructures observed in the galvanizing process.

Page generated in 0.0948 seconds