• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Dynamics Study of Zirconium and Zirconium Hydride

2013 October 1900 (has links)
Molecular dynamics (MD) simulations were used in order to investigate structure and mechanical properties of zirconium and zirconium hydride. Calculation of temperature dependent failure of zirconium, diffusion of hydrogen in zirconium, properties of interfaces in zirconium and zirconium hydride and effect of hydrogen on crack nucleation and propagation were in good agreement with available experimental data. These are the first computer simulations where large-scale atomic/molecular massively parallel simulator (LAMMPS) code was used with the Embedded Atom Method (EAM) and Modified Embedded Atom Method (MEAM) to study structure and mechanical properties of zirconium hydrogen system (Zr-H) and zirconium hydride (ZrH2). Verification of methods was done in order to establish the best potential for zirconium and zirconium hydride. EAM and MEAM potentials successfully predicted lattice parameters, mechanical properties and variation of lattice parameters with temperature for α-Zr. MEAM potential was used to predict correctly the face centered structure for ZrH2 and also its mechanical properties. Temperature dependent stress-strain curves were calculated in order to predict yielding point for α-Zr. Results indicate early yielding and failure with increase of temperature in zirconium on application of tensile and compressive strains. Anisotropic stress variation with temperature in α-Zr was calculated. Hydrogen ingress through diffusion of hydrogen in zirconium is a mechanism responsible for formation of hydrides. Temperature-dependent hydrogen diffusion and activation energy for diffusion was calculated and the agreement with experiments was satisfactory. Anisotropy of diffusion of hydrogen is observed for Zr crystal. Hydrogen diffusion was also modeled under tensile and compressive strain and a possible formation of hydrides in the direction perpendicular to applied strain was observed. The effect of strain on orientation of hydride was investigated. Hydride {111} oriented crystal was strained along [1 1 ̅ 0] and [111] direction. Energy as a function of strain is calculated along both directions [111] and [1 1 ̅ 0] and it was found that energy of the system increase with increase in strain along [1 1 ̅ 0] and decrease with increase of strain along [111] direction. Calculated stress and strain curves indicate lower stresses along [111] direction and this causing the hydride to reorient in a direction perpendicular to applied strain. Structure of the interface (0 0 0 1) α-Zr // {1 1 1} δ-ZrH2 is modeled in order to investigate the crack initiation at this interface. Interfacial cracking of hydride under stress is observed. This observation is in good agreement with available experimental studies. Cracks are seen to nucleate earlier at higher temperature. Cracks and voids are common defects in zirconium fuel cladding. A crack is modeled along (0 0 0 1) plane of zirconium with hydrogen. In the presence of hydrogen cracks nucleate in zirconium causing fracture. This observation is in good agreement with previous experimental studies. Bonds surrounding atoms and stress concentration analysis were performed using OVITO and VMD software’s respectively. Weaker bonds and higher stress concentrations are observed in the presence of hydrogen in zirconium. The presented results clearly demonstrate that MD simulation can be used to predict structure and processes that are important for understanding failure in Zr based nuclear materials.
2

Molecular dynamics study of structure-property relations of single-wall carbon nanotubes (SWCNT), partially unzipped carbon nanotubes (PUCNT), and damage evolution in nanocomposites of SWCNT with polyethylene (SWCNT-PE)

Ababtin, Sultana Abdullah 06 August 2021 (has links) (PDF)
This study employs the Modified Embedded Atom Method with Bond Order (MEAM-BO) atomic potential as first used to capture single-wall carbon nanotube (SWCNT) properties accurately. We updated the MEAM-BO potential parameters to produce a MEAM-BO* potential for the SWCNT system. Calculating the wavenumber of the radial breathing mode (RBM), elastic properties, and folding energy (DELTA E) of SWCNT which are all associated with bond curvature was considered. Interestingly, MEAM-BO* including the SWCNT data base, improved the previous fit of the C-H system. Further discussed is how we constructed five different partially unzipped carbon nanotubes (PUCNT) and investigate the mechanical properties and self-healing of the simplest PUCNT by using molecular dynamics simulations. In addition, we studied the exploration of damage evolution and the mechanical response of a polyethylene/single wall carbon nanotube composite (SWCNT-PE) at different stress states, temperatures, and strain rates which are studied through utilizing atomistic simulations. The SWCNT-PE composite was expanded perpendicular to the nanotube direction and damage was computed in terms of the void number density (void nucleation) and void volume
3

Ab-Initio and Molecular Dynamics Simulations Capturing the Thermodynamic, Kinetics, and Thermomechanical Behavior of Galvanized Low-Alloy Steel

Aslam, Imran 14 December 2018 (has links)
A seven-element Modified Embedded Atom Method (MEAM) potential comprising Fe, Mn, Si, C, Al, Zn, and O is developed by employing a hierarchical multiscale modeling paradigm to simulate low-alloy steels, inhibition layer, and galvanized coatings. Experimental information alongside first-principles calculations based on Density Functional Theory served as calibration data to upscale and develop the MEAM potential. For calibrating the single element potentials, the cohesive energy, lattice parameters, elastic constants, and vacancy and interstitial formation energies are used as target data. The heat of formation and elastic constants of binary compounds along with substitutional and interstitial formation energies serve as binary potential calibration data, while substitutional and interstitial pair binding energies aid in developing the ternary potential. Molecular dynamics simulations employing the developed potentials predict the thermal expansion coefficient, heat capacity, self-diffusion coefficients, thermomechanical stress-strain behavior, and solid-solution strengthening mechanisms for steel alloys comparable to those reported in the literature. Interfacial energies between the steel substrate, inhibition layer, and surface oxides shed light on the interfacial nanostructures observed in the galvanizing process.
4

Simulation atomistique Monte Carlo Cinétique des processus de croissance de couches passives sur alliage métalliques : cas des alliages Fer-Chrome

Beh Ongueng, Yves-Alain 26 September 2008 (has links) (PDF)
La croissance de couches minces d'oxydes sur les alliages métalliques et les métaux purs est un phénomène ayant fait l'objet d'un grand nombre d'études expérimentales. Les structures des couches d'oxydes sont bien connues, ainsi que les modèles mathématiques servant à modéliser les aspects macroscopiques de la croissance. Cependant, les détails des mécanismes de germination de la couche d'oxyde dans les premiers stades de la corrosion ainsi que sa croissance ultérieure demeurent peu ou mal connus. La simulation atomistique apparaît comme une alternative pour évaluer les différents mécanismes proposés et appréhender l'influence des différents paramètres physico-chimiques. Le développement d'un tel outil de simulation a démarré au LPCS avec la thèse de M. Legrand. En se basant sur l'exemple de l'alliage FeCr, un modèle informatique tridimensionnel dit "modèle de Legrand", permettant de simuler la dissolution sélective et la passivation des alliages binaires a été réalisé. L'évolution dynamique est basée sur une technique de type Monte Carlo classique. Le logiciel permet de simuler l'évolution d'un alliage quelconque, d'une composition et d'une structure cristallographique donnée. Il prend en compte la diffusion des atomes sur la surface, leur dissolution et le blocage de la dissolution par formation d'une couche de passivation. Cet outil était adapté pour la simulation des premiers stades de la corrosion. L'objectif de ce travail est d'améliorer ce modèle existant, afin de simuler l'évolution de la couche passive sur une échelle de temps plus longue. A l'issue de ce travail, de nombreux apports ont été effectués. Ainsi, l'introduction d'un champ de force MEAM (Modified Embedded Atom Method) pour le calcul des barrières de diffusion et de dissolution, a permis de remplacer les probabilités de diffusion empiriques par des probabilités calculées, et de mettre en évidence la diffusion préférentielle des Cr vers leurs semblables. L'introduction d'une dynamique de simulation Monte Carlo Cinétique (KMC) a permis une prise en compte réaliste de l'évolution cinétique du modèle avec des temps de simulation reliés au temps réel. Enfin Un second réseau cristallographique RVO (réseau virtuel d'oxyde) tridimensionnel, correspondant à celui de la couche passive (Cr2O3) a été implémenté, ainsi qu'une interface graphique pour un meilleur suivi de la simulation. Les résultats obtenus lors des simulations sont en accord avec les observations expérimentales: passivation totale à partir du Fe-16Cr, enrichissement en Cr de la couche passive, allures des courbes cinétiques, influence du champ électrique, mise en évidence l'apparition de cavités sous la couche passive.
5

Etude par dynamique moléculaire de l'alliage eutectique Au-Si en volume et en interaction avec un substrat de silicium

Nguyen, Thi le thuy 11 September 2012 (has links) (PDF)
Ce travail a pour but l'étude des propriétés structurales, dynamiques et thermodynamiques de l'alliage Au-Si dans l'état liquide et surfondu. Nous avons utilisé des simulations de dynamique moléculaire pour déterminer ces propriétés. Les interactions interatomiques nécessaires à ces simulations ont été construites dans un modèle de type MEAM. Dans une première partie de ce travail, nous avons montré que pour la composition eutectique, la structure locale de l'alliage liquide est caractérisée par une forte affinité entre l'or et le silicium, conduisant à un ordre chimique local très important qui ralentit la formation des motifs icosaédriques, caractéristique de l'ordre structural des systèmes métalliques surfondus. Nous avons également montré que cet ordre local influence fortement les propriétés thermodynamiques et dynamiques de cet alliage liquide. Une étude plus générale autour de la composition eutectique confirme les propriétés particulières du liquide à la composition eutectique. Dans une seconde partie, nous avons étudié les propriétés de l'alliage eutectique Au-Si en interaction avec des substrats de silicium. Nous avons mis en évidence une forte structuration du liquide à l'interface, le liquide ayant la propriété de reproduire sur une couche atomique la topologie de la surface du substrat en modifiant parfois sa composition chimique. Ce comportement très particulier est relié aux propriétés de surfusion observées expérimentalement dans ces systèmes.
6

A Multiscale Study of a Nickel Penetrator Striking a Copper Plate under Very High Strain Rates

Dou, Yangqing 14 December 2018 (has links)
The objective of this dissertation centers on gaining a better understanding of the structure - property - performance relations of nickel and copper through the advanced multiscale theoretical framework and integrated computational methods. The goal of this dissertation also includes to combine material science and computational mechanics to acquire a transformative understanding of how the different crystal orientations, size scales, and penetration velocities affect plastic deformation and damage behavior of metallic materials during high strain rate (> 103s-1) processes. A multiscale computational framework for understanding plasticity and shearing mechanisms of metallic materials during the high rate process was developed, which for the first time reveals micromechanical insights on how different crystal orientations, size scales, and penetration velocities affect the atomistic simulations which render structure property information for plasticity, shearing and damage mechanisms. The contributions of this dissertation include: (1) Comprehensive understanding of the plasticity and shearing mechanisms between the nickel penetrator and copper target under high strain rates (2) Development of a multiscale study of a nickel penetrator striking a copper plate by employing macroscale simulations and atomistic simulations to better understand the micromechanisms. (3) An essential description of how different crystal orientations, size scales, and strain rates affect the plasticity and shearing mechanisms.
7

Atomistic Simulations to Study Magnetic, Mechanical, and Thermal Properties of Materials using Density Functional Theory and Semi-empirical Methods

Moitra, Amitava 01 May 2010 (has links)
We performed atomistic modeling to study magnetic, mechanical, and thermal properties of materials. We executed molecular statics and dynamics simulations for this study, using density functional theory (DFT) and semi-empirical methods, such as embedded atom method (EAM) and modified embedded atom method (MEAM) potentials. In our first study, we showed that when Al atoms are substituted in barium hexaferrite, the total magnetization monotonically decreases due to the fact that Al atoms preferentially occupy the majorly contributing magnetic sites. The second study was to explore the diffusion mechanism of Ba atoms in hematite in order to study new techniques to build spherical nano-magnetic-particles. In the third study, we showed tungsten carbide growth is inhibited in the presence of vanadium carbide. In the fourth study, we showed how the mechanical and thermal properties of iron changes with vanadium doping with a newly developed MEAM interatomic potential. The physical properties of calcium were calculated in the next study, by the development of a MEAM potential which can be used for multiscale modeling. In the sixth study, the melting temperature of nanoparticles was analyzed and shown to decrease with a decrease of its size, confirming that the bulk properties of the material significantly change in its nano counterpart. Finally a portion of this research was dedicated for the simulation of sintering mechanisms of tungsten nanoparticles at different temperatures and pressures. While the first three studies were based on DFT, the last four studies focused on understanding physical phenomena using EAM/MEAMpotentials.
8

Etude par dynamique moléculaire de l'alliage eutectique Au-Si en volume et en interaction avec un substrat de silicium / A molecular dynamics study of the bulk Au-Si eutectic alloy and in interation with substrates of silicon.

Nguyen, Thi Le Thuy 11 September 2012 (has links)
Ce travail a pour but l'étude des propriétés structurales, dynamiques et thermodynamiques de l'alliage Au-Si dans l'état liquide et surfondu. Nous avons utilisé des simulations de dynamique moléculaire pour déterminer ces propriétés. Les interactions interatomiques nécessaires à ces simulations ont été construites dans un modèle de type MEAM. Dans une première partie de ce travail, nous avons montré que pour la composition eutectique, la structure locale de l'alliage liquide est caractérisée par une forte affinité entre l'or et le silicium, conduisant à un ordre chimique local très important qui ralentit la formation des motifs icosaédriques, caractéristique de l'ordre structural des systèmes métalliques surfondus. Nous avons également montré que cet ordre local influence fortement les propriétés thermodynamiques et dynamiques de cet alliage liquide. Une étude plus générale autour de la composition eutectique confirme les propriétés particulières du liquide à la composition eutectique. Dans une seconde partie, nous avons étudié les propriétés de l'alliage eutectique Au-Si en interaction avec des substrats de silicium. Nous avons mis en évidence une forte structuration du liquide à l'interface, le liquide ayant la propriété de reproduire sur une couche atomique la topologie de la surface du substrat en modifiant parfois sa composition chimique. Ce comportement très particulier est relié aux propriétés de surfusion observées expérimentalement dans ces systèmes. / The aim of this study is to compute structural, dynamic and thermodynamic properties in the liquid and undercooled states of Au-Si alloys using molecular dynamics simulations. The interactions are described via a modified embedded-atom model (MEAM) refined to take into account the liquid properties. In a first step, for the eutectic composition, the local structure is characterized by a strong Au-Si affinity, namely a well-pronounced chemical short-range order which leads to the slowing down of the formation of icosahedral local motifs in the undercooled regime. Moreover we have shown that this short range order strongly influences dynamic and thermodynamic properties of this liquid alloy. A more general study including compositions around the eutectic composition confirms the peculiar behavior of the eutectic alloy. In a second step, we study the behavior of the eutectic alloy in interaction with different substrates of silicon. We show that the liquid mimics the orientation of the substrate, using a one-atomic layer and a chemical composition that may differ from the eutectic one. This peculiar behavior is related to the undercooling properties experimentally observed in these systems.
9

Methods for Accurately Modeling Complex Materials

Nicklas, Jeremy William Charles 24 July 2013 (has links)
No description available.
10

Precision tube production : influencing the eccentricity, residual stresses and texture developments : experiments and multiscale simulation / Production de tubes de précision : influence de l'excentricité, des contraintes résiduelles et de l’évolution de la texture : expériences et simulation multi-échelle

Foadian, Farzad 09 February 2018 (has links)
Le but principal de ce travail était d'optimiser le processus standard d'étirage des tubes de manière à contrôler l'excentricité, qui peut être la réduction ou l'augmentation de l'excentricité. Pour cette raison, l'inclinaison et / ou le déplacement ont été introduits respectivement dans le matrice et / ou le tube. Plusieurs tubes de matériaux différents - tels que le cuivre, l'aluminium, le laiton et l'acier - de différentes dimensions ont été étudiés. L’effet sur l'excentricité a été analysé en utilisant divers angles d'inclinaison, valeurs de déplacement ou combinaison d'inclinaison et de décalage. Tout en influençant et en contrôlant l'excentricité, l'évolution des contraintes résiduelles et de la texture due à l'inclinaison et / ou au décalage introduits ont été étudiées. L'autre objectif de ce travail était de développer un modèle FEM universel, afin d'obtenir les paramètres d'entrée requis, liés au matériau ou au processus ou aux deux. Ce modèle FEM a été utilisé pour accomplir la simulation du processus de formage du métal défini par l'utilisateur et pour analyser des situations plus complexes. À cet égard, un modèle de simulation multi-échelle a été développé à l'aide d'une méthode de simulation multi-échelle avec l'approche Integrated Computational Material Engineering. / The main and foremost aim of this work was to optimize the standard tube drawing process in a way that the eccentricity can be controlled, which can be the reduction or increase of eccentricity. For this reason, tilting and/or shifting was introduced to the die and/or tube, respectively. Different tubes of varied materials, such as copper, aluminum, brass, and steel with different dimensions were investigated by various tilting angles, shifting values, or combination of tilting and shifting and their effect on the eccentricity was analyzed. Along influencing and controlling the eccentricity, the evolution of the residual stresses and texture due to the introduced tilting and /or shifting were investigated. The other aim of this work was to develop a universal FEM model, which can get the required or desired input parameters, which can be material-related or process related or both, and perform the simulation of the user-defined metal forming process and therewith analyze more complex situations. In this regard, a simulation model was developed using a multiscale simulation method with Integrated Computational Material Engineering approach.

Page generated in 0.0357 seconds